Asymptotic expansions of posterior distributions in nonregular cases

被引:6
作者
Ghosal, S
Samanta, T
机构
[1] INDIAN STAT INST,DIV THEORET STAT & MATH,CALCUTTA 700035,W BENGAL,INDIA
[2] INDIAN STAT INST,COMP SCI UNIT,CALCUTTA 700035,W BENGAL,INDIA
关键词
asymptotic expansion; posterior distributions; nonregular cases;
D O I
10.1023/A:1003127108965
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the asymptotic behaviour of the posterior distributions for a one-parameter family of discontinuous densities. It is shown that a suitably centered and normalized posterior converges almost surely to an exponential Limit in the total variation norm. Further, asymptotic expansions for the density, distribution function, moments and quantiles of the posterior are also obtained. It is to be noted that, in view of the results of Ghosh et al. (1994, Statistical Decision Theory and Related Topics V, 183-199, Springer, New York) and Ghosal et al. (1995, Ann. Statist., 23, 2145-2152), the nonregular cases considered here are essentially the only ones for which the posterior distributions converge. The results obtained here are also supported by a simulation experiment.
引用
收藏
页码:181 / 197
页数:17
相关论文
共 8 条
[1]   SOME CONTRIBUTIONS TO ASYMPTOTIC THEORY OF BAYES SOLUTIONS [J].
BICKEL, PJ ;
YAHAV, JA .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 11 (04) :257-&
[2]  
CHEN CF, 1985, J ROY STAT SOC B MET, V47, P540
[3]  
Ghosal S, 1995, ANN STAT, V23, P2145
[4]  
GHOSH JK, 1994, STAT DECISION THEORY, V5, P183
[5]   ASYMPTOTIC EXPANSIONS ASSOCIATED WITH POSTERIOR DISTRIBUTIONS [J].
JOHNSON, RA .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (03) :851-&
[6]  
LeCam L., 1953, U CALIFORNIA PUBLICA, V1, P277
[7]   NOTE ON THE CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATE [J].
WALD, A .
ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (04) :595-601
[8]  
WALKER AM, 1969, J ROY STAT SOC B, V31, P80