Spin-resolved optical conductivity of two-dimensional group-VIB transition-metal dichalcogenides

被引:34
|
作者
Gibertini, Marco [1 ,2 ]
Pellegrino, Francesco M. D. [3 ,4 ]
Marzari, Nicola [1 ,2 ]
Polini, Marco [5 ,6 ,7 ]
机构
[1] Ecole Polytech Fed Lausanne, Theory & Simulat Mat THEOS, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MA, CH-1015 Lausanne, Switzerland
[3] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[4] CNR, Ist Nanosci, I-56126 Pisa, Italy
[5] CNR, Ist Nanosci, NEST, I-56126 Pisa, Italy
[6] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[7] Ist Italiano Tecnol, Graphene Labs, I-16163 Genoa, Italy
关键词
VALLEY POLARIZATION; GRAPHENE; MOS2;
D O I
10.1103/PhysRevB.90.245411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an ab initio study of the spin-resolved optical conductivity of two-dimensional (2D) group-VIB transition-metal dichalcogenides (TMDs). We carry out fully relativistic density-functional-theory calculations combined with maximally localized Wannier functions to obtain band manifolds at extremely high resolutions and focus on the photoresponse of 2D TMDs to circularly polarized light in a wide frequency range. We present extensive numerical results for monolayer TMDs involving molybdenum and tungsten combined with sulfur and selenium. Our numerical approach allows us to locate with a high degree of accuracy the positions of the points in the Brillouin zone that are responsible for Van Hove singularities in the optical response. Surprisingly, some of the saddle points do not occur exactly along high-symmetry directions in the Brillouin zone, although they happen to be in their close proximity.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides
    Liu, Gui-Bin
    Xiao, Di
    Yao, Yugui
    Xu, Xiaodong
    Yao, Wang
    CHEMICAL SOCIETY REVIEWS, 2015, 44 (09) : 2643 - 2663
  • [2] Spin susceptibility of two-dimensional transition-metal dichalcogenides
    Hatami, H.
    Kernreiter, T.
    Zulicke, U.
    PHYSICAL REVIEW B, 2014, 90 (04)
  • [3] Optoelectronics with single layer group-VIB transition metal dichalcogenides
    Khan, M. A.
    Leuenberger, Michael N.
    NANOPHOTONICS, 2018, 7 (10) : 1589 - 1600
  • [4] Functionalization of Two-Dimensional Transition-Metal Dichalcogenides
    Chen, Xin
    McDonald, Aidan R.
    ADVANCED MATERIALS, 2016, 28 (27) : 5738 - 5746
  • [5] Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides
    Chen, Yanzuo
    Yu, Shaogang
    Jiang, Tao
    Liu, Xiaojun
    Cheng, Xinbin
    Huang, Di
    FRONTIERS OF PHYSICS, 2024, 19 (02)
  • [6] In Situ Optical Tracking of Electroablation in Two-Dimensional Transition-Metal Dichalcogenides
    Kumar, Anjli
    Sebastian, Amritanand
    Das, Saptarshi
    Ringe, Emilie
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (47) : 40773 - 40780
  • [7] Wigner crystals in two-dimensional transition-metal dichalcogenides: Spin physics and readout
    Knoerzer, J.
    Schuetz, M. J. A.
    Giedke, G.
    Wild, D. S.
    De Greve, K.
    Schmidt, R.
    Lukin, M. D.
    Cirac, J., I
    PHYSICAL REVIEW B, 2020, 101 (12)
  • [8] Quantum Spin Hall Effect in Two-Dimensional Crystals of Transition-Metal Dichalcogenides
    Cazalilla, M. A.
    Ochoa, H.
    Guinea, F.
    PHYSICAL REVIEW LETTERS, 2014, 113 (07)
  • [9] Electrical contacts to two-dimensional transition-metal dichalcogenides
    Shuxian Wang
    Zhihao Yu
    Xinran Wang
    Journal of Semiconductors, 2018, (12) : 66 - 73
  • [10] Synthesis and structure of two-dimensional transition-metal dichalcogenides
    Shi, Yumeng
    Zhang, Hua
    Chang, Wen-Hao
    Shin, Hyeon Suk
    Li, Lain-Jong
    MRS BULLETIN, 2015, 40 (07) : 566 - 576