Stable systolic inequalities and cohomology products

被引:22
作者
Bangert, V
Katz, M
机构
[1] Univ Freiburg, Inst Math, D-79104 Freiburg, Germany
[2] Bar Ilan Univ, Dept Math & Stat, IL-52900 Ramat Gan, Israel
关键词
D O I
10.1002/cpa.10082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multiplicative relations in the cohomology ring of a manifold impose constraints upon its stable systoles. Given a compact Riemannian manifold (X, g), its real homology H-*(X, R) is naturally endowed with the stable norm. Briefly, if h is an element of H-k (X, R), then the stable norm of h is the infimum of the Riemannian k-volumes of real cycles representing h. The stable k-systole is the minimum of the stable norm over nonzero elements in the lattice of integral classes in H-k (X, R). Relying on results from the geometry of numbers due to W. Banaszczyk, and extending work by M. Gromov and J. Hebda, we prove metric-independent inequalities for products of stable systoles, where the product can be as long as the real cup length of X. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:979 / 997
页数:19
相关论文
共 38 条
[2]   Systolic freedom of orientable manifolds [J].
Babenko, I ;
Katz, M .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1998, 31 (06) :787-809
[3]   ASYMPTOTIC INVARIANTS OF SMOOTH MANIFOLDS [J].
BABENKO, IK .
RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1993, 41 (01) :1-38
[4]   Strong systolic freedom of closed manifolds end of polyhedrons [J].
Babenko, IK .
ANNALES DE L INSTITUT FOURIER, 2002, 52 (04) :1259-+
[5]  
Babenko IK, 1998, MATH RES LETT, V5, P461
[6]  
BABENKO IK, 2002, IN PRESS MAT SB, V193, P3
[7]   NEW BOUNDS IN SOME TRANSFERENCE THEOREMS IN THE GEOMETRY OF NUMBERS [J].
BANASZCZYK, W .
MATHEMATISCHE ANNALEN, 1993, 296 (04) :625-635
[8]   Inequalities for convex bodies and polar reciprocal lattices in R(n) .2. Application of K-convexity [J].
Banaszczyk, W .
DISCRETE & COMPUTATIONAL GEOMETRY, 1996, 16 (03) :305-311
[9]  
BANGERT V, UNPUB RIEMANNIAN MAN
[10]  
BAVARD C, 1988, GEOMETRIAE DEDICATA, V27, P349