A class of discontinuous Petrov-Galerkin methods. Part I: The transport equation

被引:171
作者
Demkowicz, L. [2 ]
Gopalakrishnan, J. [1 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Advection; Petrov-Galerkin; High order; Discontinuous Galerkin; DG; DPG; hp optimal; Spectral; Conservative; Flux; Postprocessing; 2ND-ORDER ELLIPTIC PROBLEMS; SCALAR HYPERBOLIC EQUATION; FINITE-ELEMENT METHODS; CONVERGENCE;
D O I
10.1016/j.cma.2010.01.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Considering a simple model transport problem, we present a new finite element method. While the new method fits in the class of discontinuous Galerkin (DG) methods, it differs from standard DG and streamline diffusion methods, in that it uses a space of discontinuous trial functions tailored for stability. The new method, unlike the older approaches, yields optimal estimates for the primal variable in both the element size h and polynomial degree p, and outperforms the standard upwind DG method. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1558 / 1572
页数:15
相关论文
共 22 条
[1]  
[Anonymous], AMD
[2]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[3]  
Belytschko T, 2001, INT J NUMER METH ENG, V50, P993, DOI 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO
[4]  
2-M
[5]   hp-Version discontinuous Galerkin methods for hyperbolic conservation laws [J].
Bey, KS ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 133 (3-4) :259-286
[6]   The discontinuous Petrov-Galerkin method for elliptic problems [J].
Bottasso, CL ;
Micheletti, S ;
Sacco, R .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (31) :3391-3409
[7]  
Brezzi F., 1991, SPRINGER SERIES COMP, V5
[8]   A discontinuous Petrov-Galerkin method with Lagrangian multipliers for second order elliptic problems [J].
Causin, P ;
Sacco, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (01) :280-302
[9]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[10]   UNIFIED HYBRIDIZATION OF DISCONTINUOUS GALERKIN, MIXED, AND CONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS [J].
Cockburn, Bernardo ;
Gopalakrishnan, Jayadeep ;
Lazarov, Raytcho .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :1319-1365