Dynamic Simulation of a CPV/T System Using the Finite Element Method

被引:28
|
作者
Renno, Carlo [1 ]
De Giacomo, Michele [2 ]
机构
[1] Univ Salerno, Dept Ind Engn, I-84084 Salerno, Italy
[2] Univ Salerno, I-84084 Salerno, Italy
关键词
CPV/T system; heat recovery; DNI modeling; finite element method; PERFORMANCE; DIFFUSE; MODEL;
D O I
10.3390/en7117395
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The aim of this paper is the determination of a concentrating thermo-photovoltaic (CPV/T) system dynamic model by means of the finite element method (FEM). The system consist of triple-junction InGaP/InGaAs/Ge (indium-gallium phosphide/indium-gallium-arsenide/germanium) solar cells connected to a metal core printed circuit board (MCPCB) placed on a coil circuit used for the thermal energy recovery. In particular, the main aim is to determine the fluid outlet temperature. It is evaluated corresponding both to a constant cell temperature equal to 120 degrees C, generally representing the maximum operating temperature, and to cell temperature values instantly variable with the direct normal irradiation (DNI). Hence, an accurate DNI analysis is realized adopting the Gordon-Reddy statistical model. Using an accurate electric model, the cell temperature and efficiency are determined together with the CPV/T module electric and thermal powers. Generally, the CPV system size is realized according to the user electric load demand and, then, it is important to evaluate the necessary minimum concentration ratio (C-min), the limit of CPV system applicability, in order to determine the energy convenience profile. The fluid outlet temperature can be then obtained by the FEM analysis to verify if a CPV/T system can be used in solar heating and cooling applications.
引用
收藏
页码:7395 / 7414
页数:20
相关论文
共 50 条
  • [31] Mathematical simulation of a cathodic protection system by finite element method
    Montoya, R
    Rendón, O
    Genesca, J
    MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2005, 56 (06): : 404 - 411
  • [32] New method for simulation of Mullins effect using finite element method
    Böl, M
    Reese, S
    PLASTICS RUBBER AND COMPOSITES, 2005, 34 (08) : 343 - 348
  • [33] Finite element simulation and analysis of frictional dynamic behavior of fault system
    Xing HuiLin
    Guo ZhiWei
    Wang JianChao
    Zhang RongXin
    Liu JunBiao
    Yao Qi
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2022, 65 (01): : 37 - 50
  • [34] Simulation of buckling process of shells by using the finite element method
    Choong, KK
    Ramm, E
    THIN-WALLED STRUCTURES, 1998, 31 (1-3) : 39 - 72
  • [35] Piston crank mechanism simulation using finite element method
    Miklos, I. Zs
    Miklos, C. C.
    Alic, C., I
    INTERNATIONAL CONFERENCE ON APPLIED SCIENCES, 2020, 1426
  • [36] Simulation of wheel impact test using finite element method
    Chang, Chia-Lung
    Yang, Shao-Huei
    ENGINEERING FAILURE ANALYSIS, 2009, 16 (05) : 1711 - 1719
  • [37] Simulation of ship grounding damage using the finite element method
    AbuBakar, Anuar
    Dow, R. S.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2013, 50 (05) : 623 - 636
  • [38] CRACKING SIMULATION OF HAZELNUT SHELL USING FINITE ELEMENT METHOD
    Kabas, Onder
    MITTEILUNGEN KLOSTERNEUBURG, 2020, 70 (02): : 148 - 156
  • [39] SIMULATION OF A STORE SEPARATION USING THE FINITE-ELEMENT METHOD
    FORMAGGIA, L
    PERAIRE, J
    MORGAN, K
    APPLIED MATHEMATICAL MODELLING, 1988, 12 (02) : 175 - 181
  • [40] Simulation of Lumbar Spinal Stenosis Using the Finite Element Method
    Prathumwan, Din
    Chaiya, Inthira
    Trachoo, Kamonchat
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (03): : 3645 - 3657