Dynamic Simulation of a CPV/T System Using the Finite Element Method

被引:28
|
作者
Renno, Carlo [1 ]
De Giacomo, Michele [2 ]
机构
[1] Univ Salerno, Dept Ind Engn, I-84084 Salerno, Italy
[2] Univ Salerno, I-84084 Salerno, Italy
关键词
CPV/T system; heat recovery; DNI modeling; finite element method; PERFORMANCE; DIFFUSE; MODEL;
D O I
10.3390/en7117395
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The aim of this paper is the determination of a concentrating thermo-photovoltaic (CPV/T) system dynamic model by means of the finite element method (FEM). The system consist of triple-junction InGaP/InGaAs/Ge (indium-gallium phosphide/indium-gallium-arsenide/germanium) solar cells connected to a metal core printed circuit board (MCPCB) placed on a coil circuit used for the thermal energy recovery. In particular, the main aim is to determine the fluid outlet temperature. It is evaluated corresponding both to a constant cell temperature equal to 120 degrees C, generally representing the maximum operating temperature, and to cell temperature values instantly variable with the direct normal irradiation (DNI). Hence, an accurate DNI analysis is realized adopting the Gordon-Reddy statistical model. Using an accurate electric model, the cell temperature and efficiency are determined together with the CPV/T module electric and thermal powers. Generally, the CPV system size is realized according to the user electric load demand and, then, it is important to evaluate the necessary minimum concentration ratio (C-min), the limit of CPV system applicability, in order to determine the energy convenience profile. The fluid outlet temperature can be then obtained by the FEM analysis to verify if a CPV/T system can be used in solar heating and cooling applications.
引用
收藏
页码:7395 / 7414
页数:20
相关论文
共 50 条