Mechanical properties of single-walled penta-graphene-based nanotubes: A DFT and Classical molecular dynamics study

被引:16
作者
De Sousa, J. M. [1 ]
Aguiar, A. L. [2 ]
Girao, E. C. [2 ]
Fonseca, Alexandre F. [3 ]
Coluci, V. R. [4 ]
Galvao, D. S. [3 ,5 ]
机构
[1] Inst Fed Piaui IFPI, BR-64770000 Sao Raimundo Nonato, Piaui, Brazil
[2] Univ Fed Piaui, Dept Fis, BR-64049550 Teresina, Piaui, Brazil
[3] Univ Estadual Campinas, Inst Phys Gleb Wataghin, Appl Phys Dept, BR-13083970 Campinas, SP, Brazil
[4] Univ Campinas UNICAMP, Sch Technol, BR-13484332 Limeira, SP, Brazil
[5] State Univ Campinas UNICAMP, Ctr Comp Engn & Sci, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Penta-graphene nanotubes; Mechanical properties; DFT; Reactive molecular dynamics; Nanotechnology; Fracture; CARBON NANOTUBES; ELASTIC PROPERTIES; NITRIDE NANOTUBES; ROUTE; FIELD;
D O I
10.1016/j.chemphys.2021.111187
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Membranes of carbon allotropes comprised solely of densely packed pentagonal rings, known as penta-graphene, exhibit negative Poisson's ratio (auxetic behavior) and a bandgap of 3.2 eV. In this work, we investigated the structural stability, mechanical and fracture properties of nanotubes formed by rolling up penta-graphene membranes, the so-called penta-graphene nanotubes (PGNTs). Single-walled PGNT of three distinct configurations: (n, 0), and two types of (n, n) (here called alpha and beta) were studied combining first-principles calculations and reactive molecular dynamics simulations. Our results showed Young's modulus values of 680-800 GPa, critical strain of 18-21%, ultimate tensile stress of 85-110 GPa, and Poisson's ratio values ranging from -0.05 to -0.30 (auxetic behavior). During stretching at room temperature, we observed a transition from beta-(n, n) to alpha-(n, n) PGNT near the critical strain. Fracture of PGNTs starts at the bonds that are mostly aligned to the stretching direction and after nanotube radial collapse.
引用
收藏
页数:10
相关论文
共 61 条
[1]  
Ajayan PM, 2001, TOP APPL PHYS, V80, P391
[2]   Unraveling the influence of grain boundaries on the mechanical properties of polycrystalline carbon nanotubes [J].
Alian, A. R. ;
Meguid, S. A. ;
Kundalwal, S. I. .
CARBON, 2017, 125 :180-188
[3]   Systematic generation of finite-range atomic basis sets for linear-scaling calculations [J].
Anglada, E ;
Soler, JM ;
Junquera, J ;
Artacho, E .
PHYSICAL REVIEW B, 2002, 66 (20) :1-4
[4]   Translation Symmetry Breakdown in Low-Dimensional Lattices of Pentagonal Rings [J].
Avramov, Paul ;
Demin, Victor ;
Luo, Ming ;
Choi, Cheol Ho ;
Sorokin, Pavel B. ;
Yakobson, Boris ;
Chernozatonskii, Leonid .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (22) :4525-4531
[5]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[6]  
Burchell T.D, 1999, Carbon Materials for Advanced Technologies
[7]   High Performance of Carbon Nanotube Refrigerators [J].
Cantuario, Tiago E. ;
Fonseca, Alexandre F. .
ANNALEN DER PHYSIK, 2019, 531 (04)
[8]   Mechanical Properties of Penta-Graphene Nanotubes [J].
Chen, Mingwei ;
Zhan, Haifei ;
Zhu, Yinbo ;
Wu, Hengan ;
Gu, Yuantong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (17) :9642-9647
[9]   Boron nitride nanotubes: Pronounced resistance to oxidation [J].
Chen, Y ;
Zou, J ;
Campbell, SJ ;
Le Caer, G .
APPLIED PHYSICS LETTERS, 2004, 84 (13) :2430-2432
[10]   Effect of Stone-Wales defects on the mechanical behavior of boron nitride nanotubes [J].
Choyal, Vijay ;
Kundalwal, S., I .
ACTA MECHANICA, 2020, 231 (10) :4003-4018