Microporous Hyper-Cross-Linked Aromatic Polymers Designed for Methane and Carbon Dioxide Adsorption

被引:109
作者
Errahali, M. [1 ,2 ]
Gatti, G. [1 ,2 ]
Tei, L. [1 ,2 ]
Paul, G. [1 ,2 ]
Rolla, G. A. [1 ,2 ]
Canti, L. [1 ,2 ]
Fraccarollo, A. [1 ,2 ]
Cossi, M. [1 ,2 ]
Comotti, A. [3 ]
Sozzani, P. [3 ]
Marchese, L. [1 ,2 ]
机构
[1] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, I-15121 Alessandria, Italy
[2] Univ Piemonte Orientale, Ctr NanoSiSTeMI, I-15121 Alessandria, Italy
[3] Univ Milano Bicocca, Dept Mat Sci, I-20125 Milan, Italy
关键词
METAL-ORGANIC FRAMEWORKS; MIXED-MATRIX MEMBRANES; HIGH-PRESSURE METHANE; SURFACE-AREA; GAS-STORAGE; HYDROGEN; NETWORKS; POLYSTYRENE; PREDICTION; POROSITY;
D O I
10.1021/jp5096695
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A Friedel-Crafts reaction was used to obtain covalent aromatic networks with high surface area and microporosity suited for CO2 and CH4 adsorption, even at low pressures. Starting from tetraphenylmethane and formaldehyde dimethyl acetal in different concentrations, the reaction yields porous polymers which were characterized with a wealth of experimental and computational methods. Thermogravimetry, infrared spectroscopy, and solid-state NMR were used to study the material structure. The pore distributions were measured by applying nonlocal density functional theory analysis to the adsorption isotherms of N-2 at 77 K and Ar at 87 K (the latter being more suited for pore widths less than 10 angstrom). Carbon dioxide and methane were adsorbed at 273 and 298 K to evaluate the performance of these systems in gas capture, separation, and storage. A theoretical model of the porous network was defined to describe the ordered fraction of the material, with particular attention to ultramicropores. Ar, CO2, and CH4 adsorption in this model material was simulated by Monte Carlo techniques with a purposely optimized force field.
引用
收藏
页码:28699 / 28710
页数:12
相关论文
共 51 条
[1]  
[Anonymous], 2014, POROUS MAT CARBON DI
[2]  
[Anonymous], 2011, NIST STANDARD REFERE
[3]   Gas storage in porous aromatic frameworks (PAFs) [J].
Ben, Teng ;
Pei, Cuiying ;
Zhang, Daliang ;
Xu, Jun ;
Deng, Feng ;
Jing, Xiaofei ;
Qiu, Shilun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :3991-3999
[4]   Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area [J].
Ben, Teng ;
Ren, Hao ;
Ma, Shengqian ;
Cao, Dapeng ;
Lan, Jianhui ;
Jing, Xiaofei ;
Wang, Wenchuan ;
Xu, Jun ;
Deng, Feng ;
Simmons, Jason M. ;
Qiu, Shilun ;
Zhu, Guangshan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (50) :9457-9460
[5]   Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials [J].
Budd, PM ;
Ghanem, BS ;
Makhseed, S ;
McKeown, NB ;
Msayib, KJ ;
Tattershall, CE .
CHEMICAL COMMUNICATIONS, 2004, (02) :230-231
[6]   Microporous Polycarbazole with High Specific Surface Area for Gas Storage and Separation [J].
Chen, Qi ;
Luo, Min ;
Hammershoj, Peter ;
Zhou, Ding ;
Han, Ying ;
Laursen, Bo Wegge ;
Yan, Chao-Guo ;
Han, Bao-Hang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (14) :6084-6087
[7]  
Colthup N. B., 1964, INTRO INFRARED RAMAN
[8]   Theoretical Prediction of High Pressure Methane Adsorption in Porous Aromatic Frameworks (PAFs) [J].
Cossi, Maurizio ;
Gatti, Giorgio ;
Canti, Lorenzo ;
Tei, Lorenzo ;
Errahali, Mina ;
Marchese, Leonardo .
LANGMUIR, 2012, 28 (40) :14405-14414
[9]   Microporous copolymers for increased gas selectivity [J].
Dawson, Robert ;
Ratvijitvech, Thanchanok ;
Corker, Matthew ;
Laybourn, Andrea ;
Khimyak, Yaroslav Z. ;
Cooper, Andrew I. ;
Adams, Dave J. .
POLYMER CHEMISTRY, 2012, 3 (08) :2034-2038
[10]   Microporous organic polymers for carbon dioxide capture [J].
Dawson, Robert ;
Stoeckel, Ev ;
Holst, James R. ;
Adams, Dave J. ;
Cooper, Andrew I. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :4239-4245