Enhancement of crystallization kinetics of poly(L-lactic acid) by grafting with optically pure branches

被引:9
作者
Longo, Alessandra [1 ,2 ]
Dal Poggetto, Giovanni [1 ]
Malinconico, Mario [1 ]
Laurienzo, Paola [1 ]
Di Maio, Ernesto [2 ]
Di Lorenzo, Maria Laura [1 ]
机构
[1] Natl Res Council CNR, Inst Polymers Composites & Biomat IPCB, Via Campi Flegrei 34, I-80078 Pozzuoli, Italy
[2] Univ Naples Federico II, Dipartimento Ingn Chim Mat & Prod Ind, I-80125 Naples, Italy
关键词
poly(L-lactic acid); Crystallization; Graft copolymer; POLY(LACTIC ACID); PHYSICAL-PROPERTIES; MALEIC-ANHYDRIDE; OLIGOMERS; PLASTICIZATION; POLYPROPYLENE; BEHAVIOR;
D O I
10.1016/j.polymer.2021.123852
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This work details the first example of enhancement of crystallization rate of poly (L-lactic acid) (PLLA) by introducing optically pure short chain branches. A biobased PLLA copolymer was prepared by initial radical functionalization of commercial PLLA with itaconic anhydride (IAH) in a Brabender mixer, then by reaction with a tailor-made hydroxyl-terminated, optically pure PLLA with molar mass Mn = 4 kDa, the latter prepared via ring opening polymerization. Gel permeation chromatography and infrared spectroscopy proved the efficiency of grafting reaction, with the amount of grafted IAH quantified via UV-Vis. The synthesized graft copolymer displays faster crystallization rate with respect not only to the commercial grade, but also to a binary blend with the same nominal composition. The role played by the short branches in favoring both crystal nucleation and growth was discussed in terms of molecular nucleation. The results detailed in this manuscript demonstrate that synthesis of a graft copolymer with optically pure short branches is an efficient way to improve the poor crystallization kinetics of PLLA, which is one of the major drawbacks of this polymer.
引用
收藏
页数:11
相关论文
共 55 条
[1]   An effect of lactic acid oligomers on the barrier properties of polylactide [J].
Ambrosio-Martin, J. ;
Fabra, M. J. ;
Lopez-Rubio, A. ;
Lagaron, J. M. .
JOURNAL OF MATERIALS SCIENCE, 2014, 49 (08) :2975-2986
[2]  
Androsch R., 2018, Synthesis, Structure and Properties of Poly (lactic Acid), Vfirst
[3]   Crystal nucleation in random L/D-lactide copolymers [J].
Androsch, Rene ;
Di Lorenzo, Maria Laura ;
Schick, Christoph .
EUROPEAN POLYMER JOURNAL, 2016, 75 :474-485
[4]  
[Anonymous], LUMINY LX175 PRODUCT
[5]   Small Angle X-ray Scattering Investigation of Norbornene-Terminated Syndiotactic Polypropylene and Corresponding Comb-Like Poly(macromonomer) [J].
Auriemma, Finizia ;
De Rosa, Claudio ;
Di Girolamo, Rocco ;
Silvestre, Amelia ;
Anderson-Wile, Amelia M. ;
Coates, Geoffrey W. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (35) :10320-10333
[6]   Plasticization of poly(lactic acid) through blending, with oligomers of lactic acid: Effect of the physical aging on properties [J].
Avolio, Roberto ;
Castaldo, Rachele ;
Gentile, Gennaro ;
Ambrogi, Veronica ;
Fiori, Stefano ;
Avella, Maurizio ;
Cocca, Mariacristina ;
Errico, Maria Emanuela .
EUROPEAN POLYMER JOURNAL, 2015, 66 :533-542
[7]   Synthesis and Characterization of Lactic Acid Oligomers: Evaluation of Performance as Poly(Lactic Acid) Plasticizers [J].
Burgos, Nuria ;
Tolaguera, Daniel ;
Fiori, Stefano ;
Jimenez, Alfonso .
JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2014, 22 (02) :227-235
[8]   Catalytic Systems for the Production of Poly(lactic acid) [J].
Byers, Jeffery A. ;
Biernesser, Ashley B. ;
Delle Chiaie, Kayla R. ;
Kaur, Aman ;
Kehl, Jeffrey A. .
SYNTHESIS, STRUCTURE AND PROPERTIES OF POLY(LACTIC ACID), 2018, 279 :67-118
[9]  
Carlson D, 1999, J APPL POLYM SCI, V72, P477, DOI 10.1002/(SICI)1097-4628(19990425)72:4<477::AID-APP3>3.0.CO
[10]  
2-Q