Controlling water transport in carbon nanotubes

被引:27
作者
Goh, Kunli [1 ,2 ]
Chen, Yuan [3 ]
机构
[1] Nanyang Technol Univ, Nanyang Environm & Water Res Inst, Singapore Membrane Technol Ctr, Singapore 637141, Singapore
[2] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
[3] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Nanofluidics; Nanoconfinement; Electronic structures; Water slippage; Carbon nanotubes; NANOFLUIDIC TRANSPORT; MEMBRANES; FRICTION; FLOW; CHALLENGES; CHEMISTRY; CHANNELS; SLIPPAGE; GRAPHENE;
D O I
10.1016/j.nantod.2016.12.015
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Water transport inside carbon nanotubes (CNTs) shows a wealth of unique nanofluidic phenomena, which can be exploited as solutions for many global challenges. However, translating this potential into practical applications remains questionable to date. Recently, a work by Secchi and coworkers provides confirmatory evidence of radius-dependent water slippage inside an individual CNT. This article therefore puts into perspective two key takeaways, namely, nanoconfinement and electronic structures of CNT, as promising approaches to control ultrafast water transport inside CNTs. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:13 / 15
页数:3
相关论文
共 31 条
[1]   Nanofluidics, from bulk to interfaces [J].
Bocquet, Lyderic ;
Charlaix, Elisabeth .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (03) :1073-1095
[2]   Designing carbon nanotube membranes for efficient water desalination [J].
Corry, Ben .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (05) :1427-1434
[3]   Electrochemomechanical energy conversion in nanofluidic channels [J].
Daiguji, H ;
Yang, PD ;
Szeri, AJ ;
Majumdar, A .
NANO LETTERS, 2004, 4 (12) :2315-2321
[4]   Molecular Origin of Fast Water Transport in Carbon Nanotube Membranes: Superlubricity versus Curvature Dependent Friction [J].
Falk, Kerstin ;
Sedlmeier, Felix ;
Joly, Laurent ;
Netz, Roland R. ;
Bocquet, Lyderic .
NANO LETTERS, 2010, 10 (10) :4067-4073
[5]   Carbon nanomaterials for advancing separation membranes: A strategic perspective [J].
Goh, Kunli ;
Karahan, Huseyin E. ;
Wei, Li ;
Bae, Tae-Hyun ;
Fane, Anthony G. ;
Wang, Rong ;
Chen, Yuan .
CARBON, 2016, 109 :694-710
[6]   Nanofluidic Transport through Isolated Carbon Nanotube Channels: Advances, Controversies, and Challenges [J].
Guo, Shirui ;
Meshot, Eric R. ;
Kuykendall, Tevye ;
Cabrini, Stefano ;
Fornasiero, Francesco .
ADVANCED MATERIALS, 2015, 27 (38) :5726-5737
[7]   Fast mass transport through sub-2-nanometer carbon nanotubes [J].
Holt, JK ;
Park, HG ;
Wang, YM ;
Stadermann, M ;
Artyukhin, AB ;
Grigoropoulos, CP ;
Noy, A ;
Bakajin, O .
SCIENCE, 2006, 312 (5776) :1034-1037
[8]   Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene [J].
Hu, H ;
Zhao, B ;
Hamon, MA ;
Kamaras, K ;
Itkis, ME ;
Haddon, RC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (48) :14893-14900
[9]   Water conduction through the hydrophobic channel of a carbon nanotube [J].
Hummer, G ;
Rasaiah, JC ;
Noworyta, JP .
NATURE, 2001, 414 (6860) :188-190
[10]   Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid-Solid Friction through Hydrogen Bonding [J].
Joly, Laurent ;
Tocci, Gabriele ;
Merabia, Samy ;
Michaelides, Angelos .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (07) :1381-1386