Some results on Reed's Conjecture about ω, Δ, and χ with respect to α

被引:13
作者
Kohl, Anja [1 ]
Schiermeyer, Ingo [2 ]
机构
[1] Tech Univ Bergakad Freiberg, Inst Appl Anal, D-09596 Freiberg, Germany
[2] Tech Univ Bergakad Freiberg, Inst Discrete Math & Algebra, D-09596 Freiberg, Germany
关键词
Chromatic number; Coloring; Reed's Conjecture; GRAPHS;
D O I
10.1016/j.disc.2009.05.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph of order n with chromatic number chi, maximum degree Delta, clique number omega and independence number alpha. In 1998 Reed conjectured that chi is bounded from above by left perpendicular Delta + omega + 1/2 right perpendicular. We will present some partial solutions for this conjecture with respect to alpha. For instance, we will verify Reed's Conjecture for graphs with independence number alpha = 2, for graphs with maximum degree Delta >= n - alpha - 4, and for triangle-free graphs having maximum degree Delta >= 8(n-alpha) + 118/21. In addition, we will prove the general upper bound chi <= 1/3 (n - alpha + omega + 2 + Delta+omega+1/2). (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1429 / 1438
页数:10
相关论文
共 16 条
[1]  
Brandt S, J COMBIN B IN PRESS
[2]   On colouring the nodes of a network [J].
Brooks, RL .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1941, 37 :194-197
[3]  
Gravier S, 1998, J GRAPH THEOR, V27, P87, DOI 10.1002/(SICI)1097-0118(199802)27:2<87::AID-JGT4>3.0.CO
[4]  
2-B
[5]  
Gross J. L., 2003, Handbook of Graph Theory, DOI 10.1201/9780203490204
[6]   SMALL GRAPHS WITH CHROMATIC NUMBER-5 - A COMPUTER-SEARCH [J].
JENSEN, T ;
ROYLE, GF .
JOURNAL OF GRAPH THEORY, 1995, 19 (01) :107-116
[7]  
Jensen T., 1995, Graph Coloring Problems, P115
[8]  
KING AD, 2005, DMTCS P AE, P151
[9]   Bounding χ in Terms of ω and Δ for Quasi-Line Graphs [J].
King, Andrew D. ;
Reed, Bruce A. .
JOURNAL OF GRAPH THEORY, 2008, 59 (03) :215-228
[10]   Note on Reed's conjecture [J].
Rabern, Landon .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (02) :820-827