CO2 absorption into potassium hydroxide aqueous solution: experimental and modeling

被引:28
作者
Rastegar, Zahra [1 ]
Ghaemi, Ahad [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Chem Petr & Gas Engn, POB 16765-163, Tehran, Iran
关键词
CARBON-DIOXIDE CAPTURE; VAPOR-LIQUID-EQUILIBRIA; NAOH SOLUTION; REACTIVE ABSORPTION; SODIUM-HYDROXIDE; FLUE-GAS; SOLUBILITY; KINETICS; OPTIMIZATION; FEASIBILITY;
D O I
10.1007/s00231-021-03115-9
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work, the CO2 absorption by potassium hydroxide aqueous solution was studied. The response surface methodology (RSM) based on central composite design (CCD) was used to design experiments, make models, and find the optimum operating conditions for attaining desirable responses in the range of temperature, pressure and absorbent concentration of 25-65 degrees C, 2-10 bar and 0.01-1.21 mol/lit, respectively. The effects of process variables and their interactions on the responses were investigated with the numerical model, obtained from experimental data fitting to a second-order polynomial model, to achieve the optimal conditions. The experiments and numerical model indicated that the increase in temperature and absorbent concentration decrease CO2 loading, and an increase in pressure increase CO2 loading. Optimum conditions were found to be the temperature of 35 degrees C, pressures of 4 bar and, KOH concentration of 0.412 mol/lit. The CO2 loading of 0.745 and CO2 removal efficiency of 32.221% were achieved in the optimal conditions. The modified Pitzer's G(E) model was used for CO2 + KOH + H2O system, in order to investigate the species concentration in the liquid phase. The average relative error between predicted CO2 loading and experimental CO2 loading was 7.4%.
引用
收藏
页码:365 / 381
页数:17
相关论文
共 46 条
[1]   Separation of CO2 from flue gas:: A review [J].
Aaron, D ;
Tsouris, C .
SEPARATION SCIENCE AND TECHNOLOGY, 2005, 40 (1-3) :321-348
[2]   Optimization of CO2 Capture Process from Simulated Flue Gas by Dry Regenerable Alkali Metal Carbonate Based Adsorbent Using Response Surface Methodology [J].
Amiri, Mohsen ;
Shahhosseini, Shahrokh ;
Ghaemi, Ahad .
ENERGY & FUELS, 2017, 31 (05) :5286-5296
[3]   Effects of operating and design parameters on CO2 absorption in columns with structured packings [J].
Aroonwilas, A ;
Tontiwachwuthikul, P ;
Chakma, A .
SEPARATION AND PURIFICATION TECHNOLOGY, 2001, 24 (03) :403-411
[4]   Comparative study of solvent properties for carbon dioxide absorption [J].
Aschenbrenner, Ortrud ;
Styring, Peter .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (08) :1106-1113
[5]   The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS) [J].
Azar, Christian ;
Lindgren, Kristian ;
Obersteiner, Michael ;
Riahi, Keywan ;
van Vuuren, Detlef P. ;
den Elzen, K. Michel G. J. ;
Moellersten, Kenneth ;
Larson, Eric D. .
CLIMATIC CHANGE, 2010, 100 (01) :195-202
[6]   Response surface methodology (RSM) as a tool for optimization in analytical chemistry [J].
Bezerra, Marcos Almeida ;
Santelli, Ricardo Erthal ;
Oliveira, Eliane Padua ;
Villar, Leonardo Silveira ;
Escaleira, Luciane Amlia .
TALANTA, 2008, 76 (05) :965-977
[7]   Analysis and Status of Post-Combustion Carbon Dioxide Capture Technologies [J].
Bhown, Abhoyjit S. ;
Freeman, Brice C. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (20) :8624-8632
[8]   Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model:: Chemisorption of CO2 into NaOH solution, numerical and experimental study [J].
Darmana, D. ;
Henket, R. L. B. ;
Deen, N. G. ;
Kuipers, J. A. M. .
CHEMICAL ENGINEERING SCIENCE, 2007, 62 (09) :2556-2575
[9]   INEXACT NEWTON METHODS [J].
DEMBO, RS ;
EISENSTAT, SC ;
STEIHAUG, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :400-408
[10]   VAPOR-LIQUID-EQUILIBRIA IN MULTICOMPONENT AQUEOUS-SOLUTIONS OF VOLATILE WEAK ELECTROLYTES [J].
EDWARDS, TJ ;
MAURER, G ;
NEWMAN, J ;
PRAUSNITZ, JM .
AICHE JOURNAL, 1978, 24 (06) :966-976