Development of a Sparse Polynomial Chaos Expansions Method for Parameter Uncertainty Analysis

被引:0
|
作者
Wang, C. X. [1 ]
Liu, J. [2 ]
Li, Y. P. [2 ,3 ,4 ]
Zhao, J. [1 ]
Kong, X. M. [1 ]
机构
[1] Beijing Polytech, Coll Fundamental Res, Beijing 100176, Peoples R China
[2] Xiamen Univ Technol, Sch Environm Sci & Engn, Xiamen 361024, Peoples R China
[3] Beijing Normal Univ, Sch Environm, Beijing 100875, Peoples R China
[4] Univ Regina, Fac Engn & Appl Sci, Environm Syst Engn Program, Regina, SK S4S 0A2, Canada
来源
4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL ENGINEERING AND SUSTAINABLE DEVELOPMENT (CEESD 2019) | 2020年 / 435卷
关键词
GLOBAL SENSITIVITY-ANALYSIS; MODEL;
D O I
10.1088/1755-1315/435/1/012011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Incorporating uncertainty assessment into hydrological simulation is of vital significance for providing valuable information for conserving and restoring the ecology environment in arid and semiarid regions. In this study, a sparse polynomial chaos expansions method was developed to quantify hydrological model parameter uncertainties on model performance in Kaidu river basin, China. A four dimension two order polynomial chaos expansions model was built and the effect of four parameters were quantified based on the coefficients of the polynomial chaos expansions model. Results indicated that precipitation in summer has more significant influence on model output than that in other seasons. High Sobol sensitivity indices values (0.22 in spring, 0.17 in summer, 0.21 in autumn and 0.29) for the interaction of precipitation and maximum capacity for fast store demonstrate that they are the major factors affecting runoff generation. These results can help reveal the flow processes and provide valuable information for water resources management.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Uncertainty quantification analysis with sparse polynomial chaos method
    Chen J.
    Zhang C.
    Liu X.
    Zhao H.
    Hu X.
    Wu X.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2020, 41 (03):
  • [2] Sparse polynomial chaos expansions for uncertainty quantification in thermal tomography
    Sykora, Jan
    Havelka, Jan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 436
  • [3] Uncertainty propagation of p-boxes using sparse polynomial chaos expansions
    Schobi, Roland
    Sudret, Bruno
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 339 : 307 - 327
  • [4] The method of uncertainty quantification and minimization using polynomial chaos expansions
    Sheen, David A.
    Wang, Hai
    COMBUSTION AND FLAME, 2011, 158 (12) : 2358 - 2374
  • [5] Optimization of methane simplified chemical kinetic mechanism based on uncertainty quantitation analysis by sparse polynomial chaos expansions
    Lian, Zifan
    Zhang, Jiwei
    Zhao, Feiyang
    Yu, Wenbin
    FUEL, 2023, 339
  • [6] A robust and efficient stepwise regression method for building sparse polynomial chaos expansions
    Abraham, Simon
    Raisee, Mehrdad
    Ghorbaniasl, Ghader
    Contino, Francesco
    Lacor, Chris
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 332 : 461 - 474
  • [7] Distributional uncertainty analysis using power series and polynomial chaos expansions
    Nagy, Z. K.
    Braatz, R. D.
    JOURNAL OF PROCESS CONTROL, 2007, 17 (03) : 229 - 240
  • [8] Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark
    Luethen, Nora
    Marelli, Stefano
    Sudret, Bruno
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02): : 593 - 649
  • [9] Sequential Design of Experiment for Sparse Polynomial Chaos Expansions
    Fajraoui, Noura
    Marelli, Stefano
    Sudret, Bruno
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 1085 - 1109
  • [10] Some greedy algorithms for sparse polynomial chaos expansions
    Baptista, Ricardo
    Stolbunov, Valentin
    Nair, Prasanth B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 387 : 303 - 325