Privacy preservation of cloud data in business application enabled by multi-objective red deer-bird swarm algorithm

被引:17
作者
Balashunmugaraja, B. [1 ]
Ganeshbabu, T. R. [2 ]
机构
[1] SRI Venkateswara Inst Sci & Technol, Comp Sci & Engn, Kadapa, Andhra Pradesh, India
[2] Muthayammal Engn Coll, Elect & Commun Engn, Rasipuram, Andhra Pradesh, India
关键词
Business application; Cloud computing; Privacy-preserving data mining; Data sanitization; Data restoration; Optimal key generation; Hybrid red deer-bird swarm algorithm; ATTRIBUTE-BASED ENCRYPTION; SECURITY;
D O I
10.1016/j.knosys.2021.107748
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decision-making is one of the important deals in knowledge transfer and it can be useful for the multi-source domains. Meanwhile, the existing knowledge transfer schemes do not use privacy-preserving techniques for preserving security. This can be a problem for critical domains like financial market forecasting as the misuse of security can lead to legal and financial implications. In recent years, cloud services have revolutionized various technological applications. Cloud computing has become more popular with digital technologies as it provides uninterrupted services like transmission, storage, and intensive computing of data. The architecture of the cloud is also cost-efficient. Besides, various promising services from the cloud, some challenges need to be addressed to secure the privacy of the cloud users as millions of users access its services. Privacy preservation is an important aspect in the field of data mining, and the necessity of securing important data in the cloud from hackers is on the rise. Privacy-preserving data mining algorithms have been analyzed over recent years to provide sufficient solutions for securing the privacy of the data in the cloud. This paper plans to introduce a new hybrid meta-heuristic concept for developing a privacy preservation strategy towards business data under the cloud sector. The main objective of this paper is to design a new hybrid red deer-bird swarm algorithm (RD-BSA) to ensure higher convergence and since the use of control parameters over the solution generation is minimized. The proposed privacy preservation scheme on three financial databases is evaluated with the performance against the existing privacy preservation schemes. Different analyses like statistical, key sensitivity, Known-Plaintext Attack (KPA), and Chosen-Plaintext Attack (CPA) are used for evaluating the efficiency of the algorithm. The comparative analysis of the proposed model over the conventional models demonstrates its effective performance via diverse analysis. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 42 条
[1]   Intelligent workflow scheduling for Big Data applications in IoT cloud computing environments [J].
Abualigah, Laith ;
Diabat, Ali ;
Abd Elaziz, Mohamed .
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2021, 24 (04) :2957-2976
[2]   Aquila Optimizer: A novel meta-heuristic optimization algorithm [J].
Abualigah, Laith ;
Yousri, Dalia ;
Abd Elaziz, Mohamed ;
Ewees, Ahmed A. ;
Al-qaness, Mohammed A. A. ;
Gandomi, Amir H. .
COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 157 (157)
[3]   The Arithmetic Optimization Algorithm [J].
Abualigah, Laith ;
Diabat, Ali ;
Mirjalili, Seyedali ;
Elaziz, Mohamed Abd ;
Gandomi, Amir H. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 376
[4]  
Ahamad D., 2020, J KING SAUD U COMPUT
[5]  
Al-Riyami SS, 2003, LECT NOTES COMPUT SC, V2894, P452
[6]  
[Anonymous], 2021, STOCK DATA
[7]  
[Anonymous], 2021, GDA CAPITA
[8]  
[Anonymous], 2021, MONETARY SECTOR
[9]  
Baek J, 2005, LECT NOTES COMPUT SC, V3650, P134
[10]   Optimal Key Generation for Data Sanitization and Restoration of Cloud Data: Future of Financial Cyber Security [J].
Balashunmugaraja, B. ;
Ganeshbabu, T. R. .
INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2020, 19 (04) :987-1013