ON SOLVABILITY OF A BOUNDARY VALUE PROBLEM FOR A NONHOMOGENEOUS BIHARMONIC EQUATION WITH A BOUNDARY OPERATOR OF A FRACTIONAL ORDER

被引:26
作者
Berdyshev, A. S. [1 ]
Cabada, A. [2 ]
Turmetov, B. Kh. [3 ]
机构
[1] Kazakh Natl Pedag Univ, Dept Appl Math & Informat, Alma Ata, Kazakhstan
[2] Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela, Spain
[3] Khoja Ahmet Yasawi Int Kazakh Turkish Univ, Alma Ata, Kazakhstan
关键词
biharmonic equation; boundary value problem; fractional derivative; the Riemann-Liouville operator; DIRICHLET PROBLEM;
D O I
10.1016/S0252-9602(14)60115-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the solvability of a boundary value problem for a nonhomogeneous biharmonic equation. The boundary data is determined by a differential operator of fractional order in the Riemann-Liouville sense. The considered problem is a generalization of the known Dirichlet and Neumann problems.
引用
收藏
页码:1695 / 1706
页数:12
相关论文
共 18 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]   Variational iteration method for solving biharmonic equations [J].
Ali, A. H. A. ;
Raslan, K. R. .
PHYSICS LETTERS A, 2007, 370 (5-6) :441-448
[3]   Solution of biharmonic equations with application to radar Imaging [J].
Andersson, LE ;
Elfving, T ;
Golub, GH .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 94 (02) :153-180
[4]  
BAVRIN II, 1985, DIFF EQUAT+, V21, P6
[5]  
Begehr H., 2005, General Mathematics, V13, P65
[6]   FAST NUMERICAL-SOLUTION OF THE BIHARMONIC DIRICHLET PROBLEM ON RECTANGLES [J].
BJORSTAD, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (01) :59-71
[7]   Iterative method for solving the Neumann boundary value problem for biharmonic type equation [J].
Dang, Quang A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (02) :634-643
[8]   REGULARITY OF THE SOLUTIONS FOR NONLINEAR BIHARMONIC EQUATIONS IN RN [J].
Deng Yinbin ;
Li Yi .
ACTA MATHEMATICA SCIENTIA, 2009, 29 (05) :1469-1480
[9]   SOME DIFFERENCE SCHEMES FOR BIHARMONIC EQUATION [J].
EHRLICH, LW ;
GUPTA, MM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (05) :773-790
[10]   On a new method for constructing the Green function of the Dirichlet problem for the polyharmonic equation [J].
Kal'menov, T. Sh. ;
Suragan, D. .
DIFFERENTIAL EQUATIONS, 2012, 48 (03) :441-445