Convergence rates for the iteratively regularized Gauss-Newton method in Banach spaces

被引:52
作者
Kaltenbacher, Barbara [1 ]
Hofmann, Bernd [2 ]
机构
[1] Graz Univ, Inst Math & Sci Comp, A-8010 Graz, Austria
[2] Tech Univ Chemnitz, Dept Math, D-09107 Chemnitz, Germany
关键词
ILL-POSED PROBLEMS; TIKHONOV REGULARIZATION; OPERATORS; CONVEX;
D O I
10.1088/0266-5611/26/3/035007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the iteratively regularized Gauss-Newton method (IRGNM) in a Banach space setting and prove optimal convergence rates under approximate source conditions. These are related to the classical concept of source conditions that is available only in Hilbert space. We provide results in the framework of general index functions, which include, e. g. Holder and logarithmic rates. Concerning the regularization parameters in each Newton step as well as the stopping index, we provide both a priori and a posteriori strategies, the latter being based on the discrepancy principle.
引用
收藏
页数:21
相关论文
共 26 条
[1]  
[Anonymous], 1956, Ark. Mat, DOI 10.1007/BF02589410
[2]  
Bakushinsky AB, 2004, Iterative Methods for Approximate solution of Inverse Problems
[3]   Minimization of Tikhonov functionals in Banach spaces [J].
Bonesky, Thomas ;
Kazimierski, Kamil S. ;
Maass, Peter ;
Schoepfer, Frank ;
Schuster, Thomas .
ABSTRACT AND APPLIED ANALYSIS, 2008,
[4]   Convergence rates of convex variational regularization [J].
Burger, M ;
Osher, S .
INVERSE PROBLEMS, 2004, 20 (05) :1411-1421
[5]  
Engl H. W., 1996, REGULARIZATION INVER
[6]   CONVERGENCE-RATES FOR TIKHONOV REGULARISATION OF NON-LINEAR ILL-POSED PROBLEMS [J].
ENGL, HW ;
KUNISCH, K ;
NEUBAUER, A .
INVERSE PROBLEMS, 1989, 5 (04) :523-540
[7]   A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems [J].
Hanke, M .
INVERSE PROBLEMS, 1997, 13 (01) :79-95
[8]   A CONVERGENCE ANALYSIS OF THE LANDWEBER ITERATION FOR NONLINEAR ILL-POSED PROBLEMS [J].
HANKE, M ;
NEUBAUER, A ;
SCHERZER, O .
NUMERISCHE MATHEMATIK, 1995, 72 (01) :21-37
[9]  
HEIN T, 2009, MODIFIED LANDWEBER I
[10]   Approximate source conditions for nonlinear ill-posed problems-chances and limitations [J].
Hein, Torsten ;
Hofmann, Bernd .
INVERSE PROBLEMS, 2009, 25 (03)