IRREDUCIBLE DECOMPOSITIONS AND STATIONARY STATES OF QUANTUM CHANNELS

被引:19
作者
Carbone, Raffaella [1 ]
Pautrat, Yan [2 ]
机构
[1] Univ Pavia, Dipartimento Matemat, Via Ferrata 1, I-27100 Pavia, Italy
[2] Univ Paris 11, CNRS, Univ Paris Saclay, Lab Math Orsay, F-91405 Orsay, France
关键词
quantum channel; (extremal) invariant state; enclosure; POSITIVE MAPS; SEMIGROUPS; OPERATORS;
D O I
10.1016/S0034-4877(16)30032-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a quantum channel (completely positive, trace-preserving map), we prove a generalization to the infinite-dimensional case of a result by Baumgartner and Narnhofer [3]: this result is, in a probabilistic language, a decomposition of a general quantum channel into its irreducible recurrent components. More precisely, we prove that the positive recurrent subspace (i.e. the space supporting the invariant states) can be decomposed as the direct sum of supports of extremal invariant states; this decomposition is not unique, in general, but we can determine all the possible decompositions. This allows us to describe the full structure of invariant states.
引用
收藏
页码:293 / 313
页数:21
相关论文
共 26 条
[1]   FROBENIUS THEORY FOR POSITIVE MAPS OF VONNEUMANN ALGEBRAS [J].
ALBEVERIO, S ;
HOEGHKROHN, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 64 (01) :83-94
[2]   Open Quantum Random Walks [J].
Attal, S. ;
Petruccione, F. ;
Sabot, C. ;
Sinayskiy, I. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (04) :832-852
[3]   THE STRUCTURES OF STATE SPACE CONCERNING QUANTUM DYNAMICAL SEMIGROUPS [J].
Baumgartner, Bernhard ;
Narnhofer, Heide .
REVIEWS IN MATHEMATICAL PHYSICS, 2012, 24 (02)
[4]   Information-preserving structures: A general framework for quantum zero-error information [J].
Blume-Kohout, Robin ;
Ng, Hui Khoon ;
Poulin, David ;
Viola, Lorenza .
PHYSICAL REVIEW A, 2010, 82 (06)
[5]   Engineering Stable Discrete-Time Quantum Dynamics via a Canonical QR Decomposition [J].
Bolognani, Saverio ;
Ticozzi, Francesco .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (12) :2721-2734
[6]   Repeated interactions in open quantum systems [J].
Bruneau, Laurent ;
Joye, Alain ;
Merkli, Marco .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (07)
[7]   Ergodic and mixing quantum channels in finite dimensions [J].
Burgarth, D. ;
Chiribella, G. ;
Giovannetti, V. ;
Perinotti, P. ;
Yuasa, K. .
NEW JOURNAL OF PHYSICS, 2013, 15
[8]   Optimal log-Sobolev inequality and hypercontractivity for positive semigroups on M2(C) [J].
Carbone, R .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2004, 7 (03) :317-335
[9]   Homogeneous Open Quantum Random Walks on a Lattice [J].
Carbone, Raffaella ;
Pautrat, Yan .
JOURNAL OF STATISTICAL PHYSICS, 2015, 160 (05) :1125-1153
[10]  
Chuang I. N., 2000, Quantum Computation and Quantum Information