Applications of Machine and Deep Learning in Adaptive Immunity

被引:24
作者
Pertseva, Margarita [1 ,2 ,3 ]
Gao, Beichen [1 ]
Neumeier, Daniel [1 ]
Yermanos, Alexander [1 ,4 ,5 ]
Reddy, Sai T. [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, CH-4058 Basel, Switzerland
[2] Swiss Fed Inst Technol, Life Sci Zurich Grad Sch, CH-8006 Zurich, Switzerland
[3] Univ Zurich, CH-8006 Zurich, Switzerland
[4] Univ Geneva, Dept Pathol & Immunol, CH-1205 Geneva, Switzerland
[5] Swiss Fed Inst Technol, Inst Microbiol & Immunol, Dept Biol, CH-8093 Zurich, Switzerland
来源
ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 12, 2021 | 2021年 / 12卷
关键词
immune repertoire; T cell receptor; TCR; B cell receptor; BCR; major histocompatibility complex; MHC; neural networks; machine learning; deep learning; ACID SUBSTITUTION MATRICES; CELL-RECEPTOR SEQUENCES; T FOLLICULAR HELPER; PEPTIDOME DECONVOLUTION; ANALYSIS REVEALS; REPERTOIRE; PREDICTION; ANTIBODIES; DESIGN; BINDING;
D O I
10.1146/annurev-chembioeng-101420-125021
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Adaptive immunity is mediated by lymphocyte B and T cells, which respectively express a vast and diverse repertoire of B cell and T cell receptors and, in conjunction with peptide antigen presentation through major histocompatibility complexes (MHCs), can recognize and respond to pathogens and diseased cells. In recent years, advances in deep sequencing have led to a massive increase in the amount of adaptive immune receptor repertoire data; additionally, proteomics techniques have led to a wealth of data on peptide-MHC presentation. These large-scale data sets are now making it possible to train machine and deep learning models, which can be used to identify complex and high-dimensional patterns in immune repertoires. This article introduces adaptive immune repertoires and machine and deep learning related to biological sequence data and then summarizes the many applications in this field, which span from predicting the immunological status of a host to the antigen specificity of individual receptors and the engineering of immunotherapeutics.
引用
收藏
页码:39 / 62
页数:24
相关论文
共 151 条
  • [1] Defining HLA-II Ligand Processing and Binding Rules with Mass Spectrometry Enhances Cancer Epitope Prediction
    Abelin, Jennifer G.
    Harjanto, Dewi
    Malloy, Matthew
    Suri, Prerna
    Colson, Tyler
    Goulding, Scott P.
    Creech, Amanda L.
    Serrano, Lia R.
    Nasir, Gibran
    Nasrullah, Yusuf
    McGann, Christopher D.
    Velez, Diana
    Ting, Ying S.
    Poran, Asaf
    Rothenberg, Daniel A.
    Chhangawala, Sagar
    Rubinsteyn, Alex
    Hammerbacher, Jeff
    Gaynor, Richard B.
    Fritsch, Edward F.
    Greshock, Joel
    Oslund, Rob C.
    Barthelme, Dominik
    Addona, Terri A.
    Arleta, Christina M.
    Rooney, Michael S.
    [J]. IMMUNITY, 2019, 51 (04) : 766 - +
  • [2] Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction
    Abelin, Jennifer G.
    Keskin, Derin B.
    Sarkizova, Siranush
    Hartigan, Christina R.
    Zhang, Wandi
    Sidney, John
    Stevens, Jonathan
    Lane, William
    Zhang, Guang Lan
    Eisenhaure, Thomas M.
    Clauser, Karl R.
    Hacohen, Nir
    Rooney, Michael S.
    Carr, Steven A.
    Wu, Catherine J.
    [J]. IMMUNITY, 2017, 46 (02) : 315 - 326
  • [3] RosettaAntibodyDesign (RAbD): A general framework for computational antibody design
    Adolf-Bryfogle, Jared
    Kalyuzhniy, Oleks
    Kubitz, Michael
    Weitzner, Brian D.
    Hu, Xiaozhen
    Adachi, Yumiko
    Schief, William R.
    Dunbrack, Roland L., Jr.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (04)
  • [4] Akbar R, 2019, 759498 BIORXIV, DOI [10.1101/759498, DOI 10.1101/759498]
  • [5] Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    Alipanahi, Babak
    Delong, Andrew
    Weirauch, Matthew T.
    Frey, Brendan J.
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (08) : 831 - +
  • [6] Unified rational protein engineering with sequence-based deep representation learning
    Alley, Ethan C.
    Khimulya, Grigory
    Biswas, Surojit
    AlQuraishi, Mohammed
    Church, George M.
    [J]. NATURE METHODS, 2019, 16 (12) : 1315 - +
  • [7] IMMUNOGLOBULIN HEAVY-CHAIN EXPRESSION AND CLASS SWITCHING IN A MURINE LEUKEMIA-CELL LINE
    ALT, FW
    ROSENBERG, N
    CASANOVA, RJ
    THOMAS, E
    BALTIMORE, D
    [J]. NATURE, 1982, 296 (5855) : 325 - 331
  • [8] AMINO-ACID SUBSTITUTION MATRICES FROM AN INFORMATION THEORETIC PERSPECTIVE
    ALTSCHUL, SF
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1991, 219 (03) : 555 - 565
  • [9] NNAlign_MA; MHC Peptidome Deconvolution for Accurate MHC Binding Motif Characterization and Improved T-cell Epitope Predictions
    Alvarez, Bruno
    Reynisson, Birkir
    Barra, Carolina
    Buus, Soren
    Ternette, Nicola
    Connelley, Tim
    Andreatta, Massimo
    Nielsen, Morten
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (12) : 2459 - 2477
  • [10] Amimeur, 2020, DESIGNING FEATURE CO, DOI DOI 10.1101/2020.04.12.024844