HRV-Spark: Computing Heart Rate Variability Measures Using Apache Spark

被引:0
作者
Qu, Xufeng [1 ]
Wu, Yuanyuan [1 ]
Liu, Jinze [1 ]
Cui, Licong [2 ]
机构
[1] Univ Kentucky, Dept Comp Sci, Lexington, KY USA
[2] Univ Texas Hlth Sci Ctr Houston, Sch Biomed Informat, Houston, TX 77030 USA
来源
2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE | 2020年
基金
美国国家卫生研究院;
关键词
Heart Rate Variability; Cloud Computing; Apache Spark; Amazon Web Services;
D O I
10.1109/BIBM49941.2020.9313361
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Heart rate variability (HRV) analysis has been serving as a significant promising marker in clinical research over the last few decades. The rapidly growing heart rate data generated from various devices, particularly the electrocardiograph (ECG), need to be stored properly and processed timely. There is a pressing need to develop efficient approaches for performing HRV analyses based on ECG signals. In this paper, we introduce a cloud computing approach (called HRV-Spark) to compute HRV measures in parallel by leveraging Apache Spark and a QRS detection algorithm in [1]. We ran HRV-Spark on Amazon Web Services (AWS) clusters using large-scale datasets in the National Sleep Research Resource. We evaluated the performance and scalability of HRV-Spark in terms of the number of computing nodes in the AWS cluster, the size of the input datasets, and the hardware configuration of the computing nodes. The results show that HRV-Spark is an efficient and scalable approach for computing HRV measures.
引用
收藏
页码:2235 / 2241
页数:7
相关论文
共 13 条
[1]  
Alvarez R., 2013, Procedia Technology, V9, P1159, DOI DOI 10.1016/J.PROTCY.2013.12.129
[2]  
[Anonymous], 2012, P 9 USENIX C NETW SY
[3]  
[Anonymous], 2004, CONQUERING ECG
[4]  
Camm AJ, 1996, CIRCULATION, V93, P1043
[5]  
Chen HC, 2003, COMPUT CARDIOL, V30, P585
[6]   Scaling Up Scientific Discovery in Sleep Medicine: The National Sleep Research Resource [J].
Dean, Dennis A., II ;
Goldberger, Ary L. ;
Mueller, Remo ;
Kim, Matthew ;
Rueschman, Michael ;
Mobley, Daniel ;
Sahoo, Satya S. ;
Jayapandian, Catherine P. ;
Cui, Licong ;
Morrical, Michael G. ;
Surovec, Susan ;
Zhang, Guo-Qiang ;
Redline, Susan .
SLEEP, 2016, 39 (05) :1151-1164
[7]  
Eyal S., 2006, WILEY ENCY BIOMEDICA
[8]   The principles of software QRS detection [J].
Köhler, BU ;
Hennig, C ;
Orglmeister, R .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2002, 21 (01) :42-57
[9]   A REAL-TIME QRS DETECTION ALGORITHM [J].
PAN, J ;
TOMPKINS, WJ .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1985, 32 (03) :230-236
[10]  
Quan SF, 1997, SLEEP, V20, P1077