Calculating Kelvin force microscopy signals from static force fields

被引:24
作者
Borowik, Lukasz [1 ]
Kusiaku, Koku [1 ]
Theron, Didier [1 ]
Melin, Thierry [1 ]
机构
[1] CNRS, Inst Elect Microelect & Nanotechnol, UMR 8520, F-59652 Villeneuve Dascq, France
关键词
RESOLUTION;
D O I
10.1063/1.3323098
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present an analytical formula to achieve numerical simulations of Kelvin force microscopy (KFM) signals from static force fields, which can be employed to describe amplitude-modulation or frequency-modulation KFM, as well as simultaneous topography and KFM modes for which the tip probe exhibits a nonzero oscillation during KFM imaging. This model is shown to account for side-capacitance and nonlinear effects taking place in KFM experiments, and can therefore be used conveniently to extract quantitative information from KFM experiments at the nanoscale. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3323098]
引用
收藏
页数:3
相关论文
共 50 条
[31]   Kelvin Probe Force Microscopy on MgO(001) Surfaces and Supported Pd Nanoclusters [J].
Barth, Clemens ;
Henry, Claude R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (01) :247-253
[32]   Photoassisted Kelvin Probe Force Microscopy on Multicrystalline Si Solar Cell Materials [J].
Takahashi, Takuji .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (08)
[33]   Visualization of anisotropic conductance in polydiacetylene crystal by dual-probe frequency-modulation atomic force microscopy/Kelvin-probe force microscopy [J].
Tsunemi, Eika ;
Kobayashi, Kei ;
Matsushige, Kazumi ;
Yamada, Hirofumi .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (03)
[34]   Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform [J].
Collins, Liam ;
Ahmadi, Mahshid ;
Wu, Ting ;
Hu, Bin ;
Kalinin, Sergei V. ;
Jesse, Stephen .
ACS NANO, 2017, 11 (09) :8717-8729
[35]   Observing Electrochemical Reactions on Suspended Graphene: An Operando Kelvin Probe Force Microscopy Approach [J].
Khatun, Salma ;
Cohen, Sidney R. ;
Peled, Sa'ar Shor ;
Rosenhek-Goldian, Irit ;
Weatherup, Robert S. ;
Eren, Baran .
ADVANCED MATERIALS INTERFACES, 2021, 8 (18)
[36]   Electrical Characteristics of a Carbon Nanotube-Functionalized Probe for Kelvin Probe Force Microscopy [J].
Li, Xin ;
Hu, Xiao ;
Liu, Mengxi ;
Sun, Lianfeng ;
Qiu, Xiaohui .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (51) :28261-28266
[37]   Single-Molecule Recognition of Biomolecular Interaction via Kelvin Probe Force Microscopy [J].
Park, Jinsung ;
Yang, Jaemoon ;
Lee, Gyudo ;
Lee, Chang Young ;
Na, Sungsoo ;
Lee, Sang Woo ;
Haam, Seungjoo ;
Huh, Yong-Min ;
Yoon, Dae Sung ;
Eom, Kilho ;
Kwon, Taeyun .
ACS NANO, 2011, 5 (09) :6981-6990
[38]   Characterizing defects and transport in Si nanowire devices using Kelvin probe force microscopy [J].
Bae, S-S ;
Prokopuk, N. ;
Quitoriano, N. J. ;
Adams, S. M. ;
Ragan, R. .
NANOTECHNOLOGY, 2012, 23 (40)
[39]   Charge injection phenomena at the metal/dielectric interface investigated by Kelvin probe force microscopy [J].
Mortreuil, F. ;
Villeneuve-Faure, C. ;
Boudou, L. ;
Makasheva, K. ;
Teyssedre, G. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (17)
[40]   Torsional Harmonic Kelvin Probe Force Microscopy for High-Sensitivity Mapping of Surface Potential [J].
Zhang, Hao ;
Gao, Haibo ;
Geng, Junyuan ;
Meng, Xianghe ;
Xie, Hui .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (02) :1654-1662