Shear ordering in polymer photonic crystals

被引:34
作者
Snoswell, D. R. E. [1 ]
Kontogeorgos, A. [1 ]
Baumberg, J. J. [1 ]
Lord, T. D. [2 ]
Mackley, M. R. [2 ]
Spahn, P. [3 ]
Hellmann, G. P. [3 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[2] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB3 0HE, England
[3] DKI, D-64289 Darmstadt, Germany
基金
英国工程与自然科学研究理事会;
关键词
COLLOIDAL CRYSTALS; CRYSTALLIZATION; SUSPENSIONS; RHEOLOGY; BEHAVIOR; SPHERES;
D O I
10.1103/PhysRevE.81.020401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Optical scattering spectra are recorded in situ on flowing colloidal polymeric nanocomposites which are sheared into photonic crystals at 150 degrees C using a high-pressure quartz-cell multipass rheometer. Broadband spectroscopy of the resonant Bragg scattering peak allows the direct observation of crystal formation and melting of monodisperse core-shell particles. A range of flow conditions of this solventless, highly viscous melt reveals four distinct regimes of crystal growth and decay which match a simple rheological model. Extraction of crystal thickness, order and lattice spacing are validated by one-dimensional electromagnetic simulations.
引用
收藏
页数:4
相关论文
共 50 条
[31]   Photoswitching properties of photonic crystals infiltrated with polymer liquid crystals having azobenzene side chain groups with different methylene spacers [J].
Moritsugu, Masaki ;
Kim, Sun-nam ;
Kubo, Shoichi ;
Ogata, Tomonari ;
Nonaka, Takamasa ;
Sato, Osamu ;
Kurihara, Seiji .
REACTIVE & FUNCTIONAL POLYMERS, 2011, 71 (01) :30-35
[32]   Improvement on solvent resistance of photonic crystals by surface modification [J].
Liu, Bo-Tau ;
Lin, Ya-Li ;
Liaw, Wen-Chang ;
Lee, Rong-Ho ;
Lin, Sung-Hwa .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2012, 414 :198-203
[33]   Large-scale ordering of nanoparticles using viscoelastic shear processing [J].
Zhao, Qibin ;
Finlayson, Chris E. ;
Snoswell, David R. E. ;
Haines, Andrew ;
Schaefer, Christian ;
Spahn, Peter ;
Hellmann, Goetz P. ;
Petukhov, Andrei V. ;
Herrmann, Lars ;
Burdet, Pierre ;
Midgley, Paul A. ;
Butler, Simon ;
Mackley, Malcolm ;
Guo, Qixin ;
Baumberg, Jeremy J. .
NATURE COMMUNICATIONS, 2016, 7
[34]   Single-orientation colloidal crystals from capillary-action-induced shear [J].
Orr, Nicholas H. P. ;
Yanagishima, Taiki ;
Dolbnya, Igor P. ;
Petukhov, Andrei V. ;
Dullens, Roel P. A. .
JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (22)
[35]   Simulating Startup Shear of Entangled Polymer Melts [J].
Cao, Jing ;
Likhtman, Alexei E. .
ACS MACRO LETTERS, 2015, 4 (12) :1376-1381
[36]   Shear Induced Interactions Cause Polymer Compression [J].
Dunstan, Dave E. ;
Harvie, Dalton J. E. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[37]   Effect of ionic strength on shear-thinning nanoclay-polymer composite hydrogels [J].
Sheikhi, Amir ;
Afewerki, Samson ;
Oklu, Rahmi ;
Gaharwar, Akhilesh K. ;
Khademhosseini, Ali .
BIOMATERIALS SCIENCE, 2018, 6 (08) :2073-2083
[38]   Electric Field Enhances Shear Resistance of Polymer Melts via Orientational Polarization in Microstructures [J].
Huo, Miao ;
Guo, Yunlong .
POLYMERS, 2020, 12 (02)
[39]   Interfacial Engineering Approach to Pattern Resilient Polymer Photonic Crystals with Temperature-Responsive Optical Properties [J].
Robertson, Mark ;
Obando, Alejandro Guillen ;
Qiang, Zhe .
ADVANCED MATERIALS INTERFACES, 2022, 9 (10)
[40]   Solid Deep Ultraviolet Diffracting Inverse Opal Photonic Crystals [J].
Hufziger, Kyle T. ;
Zrimsek, Alyssa B. ;
Asher, Sanford A. .
ACS APPLIED NANO MATERIALS, 2018, 1 (12) :7016-7024