Karoubianness of a triangulated category

被引:43
作者
Le, Jue
Chen, Xiao-Wu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Univ Sci & Technol China, Dept Math, Anhua 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Karoubianness; triangulated category; t-structure;
D O I
10.1016/j.jalgebra.2006.11.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that triangulated categories with bounded t-structures are Karoubian. Consequently, for an Ext-finite abelian category over a commutative noetherian complete local ring, its bounded derived category is Krull-Schmidt. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:452 / 457
页数:6
相关论文
共 50 条
[31]   Triangulated categories and the Ziegler spectrum [J].
Garkusha, G ;
Prest, M .
ALGEBRAS AND REPRESENTATION THEORY, 2005, 8 (04) :499-523
[32]   Triangulated Categories and the Ziegler Spectrum [J].
Grigory Garkusha ;
Mike Prest .
Algebras and Representation Theory, 2005, 8 :499-523
[33]   Balanced Pairs on Triangulated Categories☆ [J].
Fu, Xianhui ;
Hu, Jiangsheng ;
Zhang, Dongdong ;
Zhu, Haiyan .
ALGEBRA COLLOQUIUM, 2023, 30 (03) :385-394
[34]   MUTATION PAIRS AND TRIANGULATED QUOTIENTS [J].
Lin, Zengqiang ;
Wang, Minxiong .
THEORY AND APPLICATIONS OF CATEGORIES, 2015, 30 :1823-1840
[35]   ON THE VANISHING OF COHOMOLOGY IN TRIANGULATED CATEGORIES [J].
Bergh, Petter Andreas .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2011, 13 (02) :19-36
[36]   Gorenstein objects in triangulated categories [J].
Asadollahi, J ;
Salarian, S .
JOURNAL OF ALGEBRA, 2004, 281 (01) :264-286
[37]   Tilting objects in triangulated categories [J].
Hu, Yonggang ;
Yao, Hailou ;
Fu, Xuerong .
COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) :410-429
[38]   DEFINABILITY AND APPROXIMATIONS IN TRIANGULATED CATEGORIES [J].
Laking, Rosanna ;
Vitoria, Jorge .
PACIFIC JOURNAL OF MATHEMATICS, 2020, 306 (02) :557-586
[39]   Determinant functors on triangulated categories [J].
Breuning, Manuel .
JOURNAL OF K-THEORY, 2011, 8 (02) :251-291
[40]   On Weakly Negative Subcategories, Weight Structures, and (Weakly) Approximable Triangulated Categories [J].
Bondarko, M. V. ;
Vostokov, S. V. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (02) :151-159