On the non-existence of right almost split maps

被引:8
作者
Saroch, Jan [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
FREE MODULES; APPROXIMATIONS; SEQUENCES;
D O I
10.1007/s00222-016-0712-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, over any ring, a module C is the codomain of a right almost split map, if and only if C is finitely presented with a local endomorphism ring. Thus we answer a 40-year-old question by Maurice Auslander.
引用
收藏
页码:463 / 479
页数:17
相关论文
共 15 条
[1]  
Adamek J., 1994, LONDON MATH SOC LECT, V189, pxiv+ 316
[2]  
Angeleri Hugel L., APPROXIMATIONS MITTA
[3]   REPRESENTATION THEORY OF ARTIN ALGEBRAS -3 ALMOST SPLIT SEQUENCES [J].
AUSLANDER, M ;
REITEN, I .
COMMUNICATIONS IN ALGEBRA, 1975, 3 (03) :239-294
[4]  
Auslander M., 1986, LONDON MATH SOC LECT, V116, P81
[5]  
Auslander M., 1977, LECT NOTES PURE APPL, V26, P1
[6]  
Auslander M., 1978, DEKKER, V37, P1
[7]   HOMOMORPHISMS ON INFINITE DIRECT PRODUCTS OF GROUPS, RINGS AND MONOIDS [J].
Bergman, George M. .
PACIFIC JOURNAL OF MATHEMATICS, 2015, 274 (02) :451-495
[8]   Additive categories of locally finite representation type [J].
Dung, NV ;
García, JL .
JOURNAL OF ALGEBRA, 2001, 238 (01) :200-238
[9]  
Gobel R., 2012, EXPOSITIONS MATH, V41
[10]   Almost free modules and Mittag-Leffler conditions [J].
Herbera, Dolors ;
Trlifaj, Jan .
ADVANCES IN MATHEMATICS, 2012, 229 (06) :3436-3467