Convergence of fractional step mimetic finite difference discretization for semilinear parabolic problems

被引:7
作者
Arraras, A. [1 ]
Portero, L. [1 ]
Jorge, J. C. [1 ]
机构
[1] Univ Publ Navarra, Dpto Ingn Matemat & Informat, Pamplona 31006, Spain
关键词
Domain decomposition; Fractional steps; Linearly implicit method; Mimetic finite difference; Mixed finite element; Parabolic problem; DIFFUSION-EQUATIONS; SUPERCONVERGENCE; QUADRILATERALS; MESHES;
D O I
10.1016/j.apnum.2009.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the numerical solution of semilinear parabolic problems by means of efficient parallel algorithms. We first consider a mimetic finite difference method for the spatial semidiscretization. The connection of this method with an appropriate mixed finite element technique is the key to prove the convergence of the semidiscrete scheme. Next, we propose and analyze the use of a linearly implicit fractional step Runge-Kutta method as time integrator. The choice of suitable operator splittings related to an adequate decomposition of the spatial domain makes it possible to obtain totally discrete schemes that can be easily parallelized. A numerical test is shown to illustrate the theoretical results. (C) 2009 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:473 / 485
页数:13
相关论文
共 22 条
  • [1] Quadrilateral H(div) finite elements
    Arnold, DN
    Boffi, D
    Falk, RS
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) : 2429 - 2451
  • [2] Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals
    Berndt, M
    Lipnikov, K
    Shashkov, M
    Wheeler, MF
    Yotov, I
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (04) : 1728 - 1749
  • [3] Berndtf M., 2001, J NUMER MATH, V9, P265, DOI [10.1515/JNMA.2001.265, DOI 10.1515/JNMA.2001.265]
  • [4] Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes
    Brezzi, F
    Lipnikov, K
    Shashkov, M
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) : 1872 - 1896
  • [5] Brezzi F., 1991, SPRINGER SERIES COMP, V15
  • [6] A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations
    Chen, YP
    Huang, YQ
    Yu, DH
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 57 (02) : 193 - 209
  • [7] Ewing R. E., 1993, East-West J. Numer. Math., V1, P199
  • [8] Superconvergence of mixed finite element approximations over quadrilaterals
    Ewing, RE
    Liu, MM
    Wang, JP
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) : 772 - 787
  • [9] Ganzha V, 2004, NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, P368
  • [10] The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials
    Hyman, J
    Shashkov, M
    Steinberg, S
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 132 (01) : 130 - 148