Blow-up for a degenerate reaction-diffusion system with nonlinear nonlocal sources

被引:29
作者
Du, Lili [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
关键词
global existence-; blow-up; blow-up rate; degenerate reaction-diffusion system;
D O I
10.1016/j.cam.2006.02.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the global existence and blow-up of nonnegative solution of the system u(1) = Delta u(m) + u(p1) integral(Omega)v(q1) dx, v(1) = Delta v(n) + v(p2) integral(Omega)u(q2)dx, (x, t) epsilon Omega X (0, T) with homogeneous Dirichlet boundary conditions, where Omega subset of R-N is a bounded domain with smooth boundary partial derivative Omega, m, n > 1, p(1), p(2). q(1). q(2) > 0. The results depend crucially on the number p(i), q(j), m, n, the domain Omega and the initial data u(0)(x), v(0)(x). Moreover, we obtain the blow-up rate of the blow-up solution under some appropriate hypotheses. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:237 / 247
页数:11
相关论文
共 31 条
[1]   LOCAL EXISTENCE AND UNIQUENESS OF SOLUTIONS OF DEGENERATE PARABOLIC EQUATIONS [J].
ANDERSON, JR .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (01) :105-143
[2]  
Anderson JR, 1997, MATH METHOD APPL SCI, V20, P1069, DOI 10.1002/(SICI)1099-1476(19970910)20:13<1069::AID-MMA867>3.0.CO
[3]  
2-Y
[4]   Liouville theorems and blow up behaviour in semilinear reaction diffusion systems [J].
Andreucci, D ;
Herrero, MA ;
Velazquez, JJL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (01) :1-53
[5]   STABILIZATION OF SOLUTIONS OF A DEGENERATE NON-LINEAR DIFFUSION PROBLEM [J].
ARONSON, D ;
CRANDALL, MG ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (10) :1001-1022
[6]   THERMAL-BEHAVIOR FOR A CONFINED REACTIVE GAS [J].
BEBERNES, J ;
BRESSAN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 44 (01) :118-133
[7]   BLOW-UP ESTIMATES OF POSITIVE SOLUTIONS OF A PARABOLIC-SYSTEM [J].
CARISTI, G ;
MITIDIERI, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 113 (02) :265-271
[8]   Global existence and blow-up for a nonlinear reaction-diffusion system [J].
Chen, HW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (02) :481-492
[9]   The role of critical exponents in blow-up theorems: The sequel [J].
Deng, K ;
Levine, HA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 243 (01) :85-126
[10]   Global existence and finite time blow up for a degenerate reaction-diffusion system [J].
Deng, WB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (05) :977-991