Input-output finite-time stabilization of impulsive linear systems: Necessary and sufficient conditions

被引:44
作者
Amato, F. [1 ]
De Tommasi, G. [2 ]
Pironti, A. [2 ]
机构
[1] Magna Graecia Univ Catanzaro, Sch Comp & Biomed Engn, Dept Expt & Clin Med, Campus Germaneto Salvatore Venuta, I-88100 Catanzaro, Italy
[2] Univ Naples Federico II, Dipartimento Ingn Elettr & Tecnol Informaz, Via Claudio 21, I-80125 Naples, Italy
关键词
Impulsive dynamical linear systems; IO-FTS; D/DLMIs; D/DLE; STABILITY;
D O I
10.1016/j.nahs.2015.08.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main result of this paper consists of a pair of necessary and sufficient conditions for the input-output finite-time stability of impulsive linear systems. The former requires that an optimization problem, constrained by a coupled differential/difference linear matrix inequality (LMI), admits a feasible solution; the latter that the solution of a coupled differential/difference Lyapunov equation satisfies a constraint on the maximum eigenvalue. The first condition was already provided in Amato et al. (2011), where, however, only sufficiency was proven. The novel analysis condition (i.e. the one requiring the solution of the differential/difference Lyapunov equation) is shown to be more efficient from the computational point of view, while the result based on the differential/difference LMI is the starting point for the derivation of the design theorem. Some examples illustrate the benefits of the proposed technique. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 18 条
[1]   Finite-time stabilization of impulsive dynamical linear systems [J].
Amato, F. ;
Ambrosino, R. ;
Cosentino, C. ;
De Tommasi, G. .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2011, 5 (01) :89-101
[2]   Input-output finite time stabilization of linear systems [J].
Amato, F. ;
Ambrosino, R. ;
Cosentino, C. ;
De Tommasi, G. .
AUTOMATICA, 2010, 46 (09) :1558-1562
[3]  
Amato F., 2011, P 19 MED C CONTR AUT
[4]  
Amato F., 2014, LECT NOTES CONTROL I, V453
[5]   Input-Output Finite-Time Stability of Linear Systems: Necessary and Sufficient Conditions [J].
Amato, Francesco ;
Carannante, Giuseppe ;
De Tommasi, Gianmaria ;
Pironti, Alfredo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (12) :3051-3063
[6]   Input-output finite-time stabilisation of a class of hybrid systems via static output feedback [J].
Amato, Francesco ;
Carannante, Giuseppe ;
De Tommasi, Gianmaria .
INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (06) :1055-1066
[7]  
[Anonymous], 2006, ROBUST CONTROL LINEA
[8]  
[Anonymous], THESIS CHALMERS U TE
[9]   ROBUST PERFORMANCE OF LINEAR PARAMETRICALLY VARYING SYSTEMS USING PARAMETRICALLY-DEPENDENT LINEAR FEEDBACK [J].
BECKER, G ;
PACKARD, A .
SYSTEMS & CONTROL LETTERS, 1994, 23 (03) :205-215
[10]   Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints [J].
Briat, Corentin .
AUTOMATICA, 2013, 49 (11) :3449-3457