Local rigidity of actions of higher rank Abelian groups and Kam method

被引:12
作者
Damjanovic, D [1 ]
Katok, A [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
来源
ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY | 2004年 / 10卷
关键词
local rigidity; group actions; KAM method; torus;
D O I
10.1090/S1079-6762-04-00139-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a new method for proving local differentiable rigidity for actions of higher rank abelian groups. Unlike earlier methods it does not require previous knowledge of structural stability and instead uses a version of the KAM (Kolmogorov-Arnold-Moser) iterative scheme. As an application we show C-infinity local rigidity for Z(k) (k greater than or equal to 2) partially hyperbolic actions by toral automorphisms. We also prove the existence of irreducible genuinely partially hyperbolic higher rank actions by automorphisms on any torus T-N for any even N greater than or equal to 6.
引用
收藏
页码:142 / 154
页数:13
相关论文
共 24 条
[1]  
[Anonymous], 2001, P S PURE MATH
[2]  
[Anonymous], 1993, KAM THEORY SEMICLASS
[3]   Local rigidity of partially hyperbolic actions I. KAM method and Zk actions on the torus [J].
Damjanovic, Danijela ;
Katok, Anatole .
ANNALS OF MATHEMATICS, 2010, 172 (03) :1805-1858
[4]  
EINSEIDLER M, IN PRESS ANN MATH
[5]  
FISHER D, 2004, LOCAL RIGIDITY AFFIN
[6]  
Guysinsky M, 1998, MATH RES LETT, V5, P149
[7]  
HERTZ FR, 2004, IN PRESS ANN MATH
[8]  
Hirsch M. W., 1977, LECT NOTES MATH, V583
[9]  
HURDER S, 1993, MICH MATH J, V40, P561
[10]   LOCAL RIGIDITY FOR CERTAIN GROUPS OF TORAL AUTOMORPHISMS [J].
KATOK, A ;
LEWIS, J .
ISRAEL JOURNAL OF MATHEMATICS, 1991, 75 (2-3) :203-241