Macroscopic limit of Vlasov type equations with friction

被引:35
作者
Jabin, PE [1 ]
机构
[1] Ecole Normale Super, Dept Math & Informat, F-75230 Paris 05, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2000年 / 17卷 / 05期
关键词
D O I
10.1016/S0294-1449(00)00118-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to investigate the limit of some kinetic equations with a strong force. Due to friction, the solution concentrates to a monokinetic distribution so as to keep the total of force bounded and in the limit we recover a macroscopic system. This kind of asymptotics is a natural question when the mass of the particles is very small or their inertia is neglected. After that we also study the properties of the limit system and especially the uniqueness of solutions which provides the full convergence of the family of solutions to the kinetic equation. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:651 / 672
页数:22
相关论文
共 18 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]  
Arsen'ev AA., 1975, USSR COMP MATH MATH, V15, P131, DOI DOI 10.1016/0041-5553(75)90141-X
[3]  
BRENIER Y, IN PRESS COMM PDE
[4]  
DIPERNA R, 1988, CR ACAD SCI I-MATH, V307, P655
[5]  
FRENOD E, 1998, 3428 INRIA
[6]  
GASSER I, UNPUB WORK
[7]  
Glassey RT., 1996, CAUCHY PROBLEM KINET, DOI 10.1137/1.9781611971477
[8]  
GOLSE F, 1999, LMENS, V99
[9]   Oscillations in quasineutral plasmas [J].
Grenier, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (3-4) :363-394
[10]  
Hamdache K., 1998, Jpn. J. Ind. Appl. Math., V15, P51