PyCARL: A PyNN Interface for Hardware-Software Co-Simulation of Spiking Neural Network

被引:28
作者
Balaji, Adarsha [1 ]
Adiraju, Prathyusha [2 ]
Kashyap, Hirak J. [3 ]
Das, Anup [1 ,2 ]
Krichmar, Jeffrey L. [3 ]
Dutt, Nikil D. [3 ]
Catthoor, Francky [2 ,4 ,5 ]
机构
[1] Drexel Univ, Elect & Comp Engn, Philadelphia, PA 19104 USA
[2] Stichting Imec Nederlands, Neuromorph Comp, Eindhoven, Netherlands
[3] Univ Calif Irvine, Cognit Sci & Comp Sci, Irvine, CA 92697 USA
[4] Katholieke Univ Leuven, ESAT Dept, Leuven, Belgium
[5] IMEC, Leuven, Belgium
来源
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2020年
基金
美国国家科学基金会;
关键词
spiking neural network (SNN); neuromorphic computing; CARLsim; co-simulation; design-space exploration;
D O I
10.1109/ijcnn48605.2020.9207142
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present PyCARL, a PyNN-based common Python programming interface for hardware-software co-simulation of spiking neural network (SNN). Through PyCARL, we make the following two key contributions. First, we provide an interface of PyNN to CARLsim, a computationally efficient, GPU-accelerated and biophysically-detailed SNN simulator. PyCARL facilitates joint development of machine learning models and code sharing between CARLsim and PyNN users, promoting an integrated and larger neuromorphic community. Second, we integrate cycle-accurate models of state-of-the-art neuromorphic hardware such as TrueNorth, Loihi, and DynapSE in PyCARL, to accurately model hardware latencies, which delay spikes between communicating neurons, degrading performance of machine learning models. PyCARL allows users to analyze and optimize the performance difference between software-based simulation and hardware-oriented simulation. We show that system designers can also use PyCARL to perform design-space exploration early in the product development stage, facilitating faster time-to-market of neuromorphic products.
引用
收藏
页数:10
相关论文
共 28 条
[1]  
[Anonymous], 2018, NEURAL NETWORKS
[2]  
[Anonymous], 2018, IEEE MICRO
[3]  
Balaji A., 2019, GLSVLSI
[4]  
Balaji A., 2019, CAL
[5]   Mapping Spiking Neural Networks to Neuromorphic Hardware [J].
Balaji, Adarsha ;
Das, Anup ;
Wu, Yuefeng ;
Huynh, Khanh ;
Dell'Anna, Francesco G. ;
Indiveri, Giacomo ;
Krichmar, Jeffrey L. ;
Dutt, Nikil D. ;
Schaafsma, Siebren ;
Catthoor, Francky .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2020, 28 (01) :76-86
[6]   Power-Accuracy Trade-Offs for Heartbeat Classification on Neural Networks Hardware [J].
Balaji, Adarsha ;
Corradi, Federico ;
Das, Anup ;
Pande, Sandeep ;
Schaafsma, Siebren ;
Catthoor, Francky .
JOURNAL OF LOW POWER ELECTRONICS, 2018, 14 (04) :508-519
[7]  
Catania V, 2015, IEEE INT CONF ASAP, P162, DOI 10.1109/ASAP.2015.7245728
[8]  
Choudhary T, 2018, INT CONF INTEL INFOR, P1
[9]  
Das A., 2018, CHASE
[10]  
Das A., 2018, DATE