Minimal Cantor systems and unimodal maps

被引:13
作者
Bruin, H [1 ]
机构
[1] Univ Groningen, Dept Math, NL-9700 AV Groningen, Netherlands
关键词
Minimal Cantor systems; unimodal maps; Bratelli diagrams; Vershik adic transformations;
D O I
10.1080/1023619021000047743
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the restriction of unimodal maps f to the omega-limit set omega(c) of the critical point for certain cases where omega(c) is a Minimal Cantor set. We investigate the relation of these minimal systems to enumeration scales (generalized adding machines), to Vershik adic transformations on ordered Bratelli diagrams and to substitution shifts. Sufficient conditions are given for (omega(c),f) to be uniquely ergodic.
引用
收藏
页码:305 / 318
页数:14
相关论文
共 24 条
[1]   Dynamics associated with a numeration scale [J].
Barat, G ;
Downarowicz, T ;
Liardet, P .
ACTA ARITHMETICA, 2002, 103 (01) :41-78
[2]  
BARAT G, 2000, C MATH, V84, P285
[3]  
Birkhoff Garrett, 1957, T AM MATH SOC, V85, P219, DOI 10.2307/1992971
[4]  
BLOKH AM, 1991, ANN SCI ECOLE NORM S, V24, P545
[5]  
BRUCKS K, UNPUB NOTES 1 D DYNA
[6]   Wild Cantor attractors exist [J].
Bruin, H ;
Keller, G ;
Nowicki, T ;
vanStrien, S .
ANNALS OF MATHEMATICS, 1996, 143 (01) :97-130
[7]   Topological conditions for the existence of absorbing Cantor sets [J].
Bruin, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (06) :2229-2263
[8]   COMBINATORICS OF THE KNEADING MAP [J].
BRUIN, H .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (05) :1339-1349
[9]   Adding machines and wild attractors [J].
Bruin, H ;
Keller, G ;
St Pierre, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 :1267-1287
[10]  
Bruin H., 1999, CONT MATH, V246, P47