STOCHASTIC FLOWS OF DIFFEOMORPHISMS FOR ONE-DIMENSIONAL SDE WITH DISCONTINUOUS DRIFT

被引:20
作者
Attanasio, Stefano [1 ]
机构
[1] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
Stochastic flows; Local time;
D O I
10.1214/ECP.v15-1545
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The existence of a stochastic flow of class C-1,C-alpha, for alpha < 1/2, for a 1-dimensional SDE will be proved under mild conditions on the regularity of the drift. The diffusion coefficient is assumed constant for simplicity, while the drift is an autonomous BV function with distributional derivative bounded from above or from below. To reach this result the continuity of the local time with respect to the initial datum will also be proved.
引用
收藏
页码:213 / 226
页数:14
相关论文
共 9 条
[1]   Transport equation and Cauchy problem for BV vector fields [J].
Ambrosio, L .
INVENTIONES MATHEMATICAE, 2004, 158 (02) :227-260
[2]   Zero-noise solutions of linear transport equations without uniqueness: an example [J].
Attanasio, Stefano ;
Flandoli, Franco .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (13-14) :753-756
[3]   Well-posedness of the transport equation by stochastic perturbation [J].
Flandoli, F. ;
Gubinelli, M. ;
Priola, E. .
INVENTIONES MATHEMATICAE, 2010, 180 (01) :1-53
[4]   A singular large deviations phenomenon [J].
Gradinaru, M ;
Herrmann, S ;
Roynette, B .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2001, 37 (05) :555-580
[5]   Ray-Knight theorems related to a stochastic flow [J].
Hu, YY ;
Warren, J .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 86 (02) :287-305
[6]   STRONG COMPARISON OF SOLUTIONS OF ONE-DIMENSIONAL STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
OUKNINE, Y ;
RUTKOWSKI, M .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1990, 36 (02) :217-230
[7]   From Tanaka's formula to Ito's formula: The fundamental theorem of stochastic calculus [J].
Rajeev, B .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1997, 107 (03) :319-327
[8]  
Revuz D., 1999, CONTINUOUS MARTINGAL
[9]  
Zvonkin AK., 1975, MAT SBORNIK, V22, P129, DOI 10.1070/SM1974v022n01ABEH001689