共 30 条
A survey of RNA editing in human brain
被引:240
作者:
Blow, M
Futreal, PA
Wooster, R
Stratton, MR
机构:
[1] Wellcome Trust Sanger Inst, Canc Genome Project, Cambridge CB10 1SA, England
[2] Inst Canc Res, Sect Canc Genet, Sutton SM2 5NG, Surrey, England
基金:
英国惠康基金;
关键词:
D O I:
10.1101/gr.2951204
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
We have conducted a survey of RNA editing in human brain by comparing sequences of clones from a human brain cDNA library to the reference human genome sequence and to genomic DNA from the same individual. In the RNA sample from which the library was constructed, -1:2000 nucleotides were edited out of >3 Mb surveyed. All edits were adenosine to inosine (A-->I) and were predominantly in intronic and in intergenic RNAs. No edits were found in translated exons and few in untranslated exons. Most edits were in high-copy-number repeats, usually Alus. Analysis of the genome in the vicinity of edited sequences strongly supports the idea that formation of intramolecular double-stranded RNA with an inverted copy underlies most A-->I editing. The likelihood of editing is increased by the presence of two inverted copies of a sequence within the same intron, proximity of the two sequences to each other (preferably within 2 kb), and by a high density of inverted copies in the vicinity. Editing exhibits sequence preferences and is less likely at an adenosine 3' to a guanosine and more likely at an adenosine 5 to a guanosine. Simulation by BLAST alignment of the double-stranded RNA molecules that underlie known edits indicates that there is a greater likelihood of A-->I editing at A:C mismatches than editing at other mismatches or at A:U matches. However, because A:U matches in double-stranded RNA are more common than all mismatches, overall the likely effect of editing is to increase the number of mismatches in double-stranded RNA.
引用
收藏
页码:2379 / 2387
页数:9
相关论文