On the unimodality and combinatorics of Bessel numbers

被引:15
作者
Choi, JY [1 ]
Smith, JDH [1 ]
机构
[1] Iowa State Univ Sci & Technol, Dept Math, Ames, IA 50011 USA
关键词
Bessel polynomial; unimodal; Stirling number; orbit decomposition;
D O I
10.1016/S0012-365X(02)00549-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Bessel numbers are reparametrized coefficients of Bessel polynomials. The paper investigates the analogies between Stirling numbers and Bessel numbers. A generating function for the Bessel numbers is obtained, and a proof of their unimodality is given. Stirling numbers and Bessel numbers are applied to the enumeration of orbit decompositions of various powers of permutation representations. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:45 / 53
页数:9
相关论文
共 9 条
[1]  
Aigner M., 1979, COMBINATORIAL THEORY
[2]   THE BESSEL POLYNOMIALS [J].
BURCHNALL, JL .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1951, 3 (01) :62-68
[3]  
Comtet L., 1970, Analyse Combinatoire, VVolume 1
[4]  
Grosswald E., 1978, Lecture Notes in Mathematics
[5]  
Huppert B., 1967, Endliche Gruppen I, VI
[6]   A NEW CLASS OF ORTHOGONAL POLYNOMIALS - THE BESSEL POLYNOMIALS [J].
KRALL, HL ;
FRINK, O .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 65 (JAN) :100-115
[7]   Speed's orbit problem: Variations on themes of burnside [J].
Smith, JDH .
EUROPEAN JOURNAL OF COMBINATORICS, 1999, 20 (08) :867-873
[8]  
SMITH JDH, 2000, GROUPS KOREA 98
[9]  
TOMDIECK T, 1979, TRANSFORMATION GROUP