A novel EEG feature extraction method based on OEMD and CSP algorithm

被引:21
作者
Li Mingai [1 ,2 ]
Guo Shuoda [1 ]
Yang Jinfu [1 ,2 ]
Sun Yanjun [1 ]
机构
[1] Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing, Peoples R China
[2] Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Motor imagery electroencephalogram; feature extraction; orthogonal empirical mode decomposition; common spatial pattern; adaptability; EMPIRICAL MODE DECOMPOSITION; BRAIN-COMPUTER-INTERFACE; FILTER BANK; CLASSIFICATION; COMMUNICATION;
D O I
10.3233/IFS-151896
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Common Spatial Pattern (CSP) algorithm is known to be effective in extracting discriminative features from Motor Imagery electroencephalograms (MI-EEG). However, its performance depends on the frequency bands that relate to brain activities associated with MI tasks. To achieve an accurate classification, several methods have been proposed to determine such a set of frequency bands. However, the existing methods cannot find the multiple subject-specific frequency bands adaptively. Based on the Orthogonal Empirical Mode Decomposition (OEMD), FIR filter and CSP algorithm, a novel feature extraction method called OEFCSP is proposed to effectively perform the autonomous extraction and selection of key individual spatial discriminative CSP features. A channel selection algorithm is applied to the band-pass filtered EEG signals to reduce the number of channels. Then, each remaining channel of the EEG signal is adaptively decomposed into multiple orthogonal Intrinsic Mode Functions (IMFs) by OEMD, and each IMF is further equally divided into multiple sub-band signals by the band-pass filters. Subsequently, the CSP features are extracted from each sub-band signal and a feature ranking algorithm is employed to reorder the CSP features. Finally, a feature selection and classification algorithm is optimized to classify the selected CSP features. Experiments are conducted on a publicly available dataset, and the experimental results show that OEFCSP yields relatively higher classification accuracies compared to the existing approaches.
引用
收藏
页码:2971 / 2983
页数:13
相关论文
共 18 条
[1]  
Ang KK, 2008, IEEE IJCNN, P2390, DOI 10.1109/IJCNN.2008.4634130
[2]   Brain-computer-interface research: Coming of age [J].
Birbaumer, N .
CLINICAL NEUROPHYSIOLOGY, 2006, 117 (03) :479-483
[3]   A K-NEAREST NEIGHBOR CLASSIFICATION RULE-BASED ON DEMPSTER-SHAFER THEORY [J].
DENOEUX, T .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1995, 25 (05) :804-813
[4]   Combined optimization of spatial and temporal filters for improving brain-computer interfacing [J].
Dornhege, Guido ;
Blankertz, Benjamin ;
Krauledat, Matthias ;
Losch, Florian ;
Curio, Gabriel ;
Mueller, Klaus-Robert .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (11) :2274-2281
[5]   Empirical mode decomposition as a filter bank [J].
Flandrin, P ;
Rilling, G ;
Gonçalvés, P .
IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (02) :112-114
[6]   Adaptive obstacle avoidance with a neural network for operant conditioning: Experiments with real robots [J].
Gaudiano, P ;
Chang, C .
1997 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION - CIRA '97, PROCEEDINGS: TOWARDS NEW COMPUTATIONAL PRINCIPLES FOR ROBOTICS AND AUTOMATION, 1997, :13-18
[7]   A confidence limit for the empirical mode decomposition and Hilbert spectral analysis [J].
Huang, NE ;
Wu, MLC ;
Long, SR ;
Shen, SSP ;
Qu, WD ;
Gloersen, P ;
Fan, KL .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2037) :2317-2345
[8]   Applications of Hilbert-Huang transform to non-stationary financial time series analysis [J].
Huang, NE ;
Wu, ML ;
Qu, WD ;
Long, SR ;
Shen, SSP .
APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2003, 19 (03) :245-268
[9]  
Jin C, 2014, T ASABE, V57, P871
[10]   Spatio-spectral filters for improving the classification of single trial EEG [J].
Lemm, S ;
Blankertz, B ;
Curio, G ;
Müller, KR .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2005, 52 (09) :1541-1548