Tuning the plasmon resonance and work function of laser-scribed chemically doped graphene

被引:28
作者
Anis, Badawi [1 ]
Abouelsayed, A. [1 ]
El Hotaby, W. [1 ]
Sawy, Amany M. [2 ]
Khalil, Ahmed S. G. [2 ,3 ]
机构
[1] Natl Res Ctr, Div Phys, Dept Spect, 33 El Bohouth St, Giza 12622, Egypt
[2] Fayoum Univ, Fac Sci, Ctr Environm & Smart Technol, Al Fayyum, Egypt
[3] Arab Acad Sci Technol & Maritime Transport, Smart Village Campus, Giza, Egypt
关键词
Terahertz; Plasmon; Work function; Laser scribed; Chemically doping graphene; Monovalent cations; Ag-nanoparticles; Ag-nanowires; SINGLE-LAYER GRAPHENE; SILVER NANOPARTICLE; OXIDE-FILMS; LARGE-AREA; TERAHERTZ; REDUCTION; SPECTROSCOPY; CARBON; NANOSHEETS; GRAPHITE;
D O I
10.1016/j.carbon.2017.05.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Here, we present terahertz spectroscopy study on laser scribed graphene (LSG) doped with monovalent Na+ cations (LSG/MNCs), silver nanoparticles (LSG/SNPs), and silver nanowires (LSG/SNWs), in the frequency range from 0.06 to 3 THz. The terahertz absorption peaks observed at approximate to 1.98, 2.06, 2.73, and 3.06 THz are attributed to the collective oscillations of free carriers in LSG, LSG/MNCs, LSG/SNPs, and LSG/SNWs, respectively. The plasmon peak position and Fermi energy E-f of LSG doped samples are shifted to higher energy compared to undoped LSG indicating the n-doping of graphene. The sigma(dc) and the charges concentration n show higher values in case of LSG/SNWs compared to other doped samples. This is mainly because silver nanowires create conducting paths between the neighboring graphene sheets. The charge density n of the LSG and LSG doped samples versus E-f, scales as n(1/4), illustrates power-law behavior which is the signature of the two-dimensional massless Dirac electrons. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:44 / 53
页数:10
相关论文
共 70 条
[61]   TiO2-graphene nanocomposites.: UV-assisted photocatalytic reduction of graphene oxide [J].
Williams, Graeme ;
Seger, Brian ;
Kamat, Prashant V. .
ACS NANO, 2008, 2 (07) :1487-1491
[62]   Conductive Thin Films of Pristine Graphene by Solvent Interface Trapping [J].
Woltornist, Steven J. ;
Oyer, Andrew J. ;
Carrillo, Jan-Michael Y. ;
Dobrynin, Andrey V. ;
Adamson, Douglas H. .
ACS NANO, 2013, 7 (08) :7062-7066
[63]  
Wooten F., 1972, Optical properties of solids
[64]   Dynamical polarization of graphene at finite doping [J].
Wunsch, B. ;
Stauber, T. ;
Sols, F. ;
Guinea, F. .
NEW JOURNAL OF PHYSICS, 2006, 8
[65]  
Yan HG, 2012, NAT NANOTECHNOL, V7, P330, DOI [10.1038/NNANO.2012.59, 10.1038/nnano.2012.59]
[66]   Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas [J].
Yao, Yu ;
Kats, Mikhail A. ;
Genevet, Patrice ;
Yu, Nanfang ;
Song, Yi ;
Kong, Jing ;
Capasso, Federico .
NANO LETTERS, 2013, 13 (03) :1257-1264
[67]   Tuning the Graphene Work Function by Electric Field Effect [J].
Yu, Young-Jun ;
Zhao, Yue ;
Ryu, Sunmin ;
Brus, Louis E. ;
Kim, Kwang S. ;
Kim, Philip .
NANO LETTERS, 2009, 9 (10) :3430-3434
[68]   Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans [J].
Zhang, Y ;
Lu, H ;
Bargmann, CI .
NATURE, 2005, 438 (7065) :179-184
[69]   Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films [J].
Zhou, Ming ;
Wang, Yuling ;
Zhai, Yueming ;
Zhai, Junfeng ;
Ren, Wen ;
Wang, Fuan ;
Dong, Shaojun .
CHEMISTRY-A EUROPEAN JOURNAL, 2009, 15 (25) :6116-6120
[70]   Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors [J].
Zhu, Yanwu ;
Murali, Shanthi ;
Stoller, Meryl D. ;
Velamakanni, Aruna ;
Piner, Richard D. ;
Ruoff, Rodney S. .
CARBON, 2010, 48 (07) :2118-2122