Meander Line Nanoantenna Absorber for Subwavelength Terahertz Detection

被引:18
作者
Chen, Yuyao [1 ]
Zhou, Haoran [1 ]
Tan, Xiaochao [1 ]
Jiang, Shun [1 ]
Yang, Ao [1 ]
Li, Junyu [1 ]
Hou, Mingming [1 ]
Guo, Qiushi [2 ]
Wang, Shao-Wei [3 ,4 ]
Liu, Feng [5 ]
Liu, Huan [1 ]
Yi, Fei [1 ,6 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China
[2] Yale Univ, Dept Elect Engn, New Haven, CT 06511 USA
[3] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
[4] Shanghai Engn Res Ctr Energy Saving Coatings, Shanghai 200083, Peoples R China
[5] Shanghai Normal Univ, Dept Phys, Shanghai 200083, Peoples R China
[6] Huazhong Univ Sci & Technol, Shenzhen R & D Ctr, Wuhan 430074, Hubei, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2018年 / 10卷 / 04期
基金
中国国家自然科学基金;
关键词
Nano-antennas; plasmonics; metamaterials; MAGNETIC POLARITONS; METAMATERIAL; SURFACE;
D O I
10.1109/JPHOT.2018.2843530
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The detection of terahertz electromagnetic waves is crucial for emerging applications within this frequency band, such as spectroscopy, imaging, and communication. Extending the well-developed uncooled infrared focal plane array technology to terahertz frequency regime would be very attractive, but high absorption in the terahertz region with a subwavelength pixel is necessary. In this paper, we proposed a meander line nanoantenna (MLNA) absorber with a metal-insulator-metal structure for subwavelength terahertz absorption. 89% absorption is achieved at the wavelength of 155 mu m with a 10 mu m pitch size. The MLNA absorber is polarization insensitive and can maintain a high absorption when the incident angle is within 40 degrees. We expect that the proposed MLNA absorber can be integrated with the small pixels of uncooled infrared focal plane array for terahertz detection.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Bi-material terahertz sensors using metamaterial structures [J].
Alves, Fabio ;
Grbovic, Dragoslav ;
Kearney, Brian ;
Lavrik, Nickolay V. ;
Karunasiri, Gamani .
OPTICS EXPRESS, 2013, 21 (11) :13256-13271
[2]   Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber [J].
Alves, Fabio ;
Grbovic, Dragoslav ;
Kearney, Brian ;
Karunasiri, Gamani .
OPTICS LETTERS, 2012, 37 (11) :1886-1888
[3]  
Ao T., 2016, OPT PHOTON J, V6, P215
[4]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[5]   Thermo-plasmonics: using metallic nanostructures as nano-sources of heat [J].
Baffou, Guillaume ;
Quidant, Romain .
LASER & PHOTONICS REVIEWS, 2013, 7 (02) :171-187
[6]  
Black S. H., 2011, P SPIE
[7]   Polarization-independent broadband meta-surface for bifunctional antenna [J].
Cai, Tong ;
Wang, Guang-Ming ;
Xu, He-Xiu ;
Tang, Shi-Wei ;
Liang, Jian-Gang .
OPTICS EXPRESS, 2016, 24 (20) :22606-22615
[8]   Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials [J].
Chen, Jing ;
Mao, Peng ;
Xu, Rongqing ;
Tang, Chaojun ;
Liu, Yuanjian ;
Wang, Qiugu ;
Zhang, Labao .
OPTICS EXPRESS, 2015, 23 (12) :16238-16245
[9]   Interaction between the magnetic polariton and surface plasmon polariton [J].
Chen, Yu-Bin ;
Chen, Chien-Jing .
OPTICS COMMUNICATIONS, 2013, 297 :169-175
[10]   Wavelength and Thermal Distribution Selectable Microbolometers Based on Metamaterial Absorbers [J].
Du, Kaikai ;
Li, Qiang ;
Zhang, Weichun ;
Yang, Yuanqing ;
Qiu, Min .
IEEE PHOTONICS JOURNAL, 2015, 7 (03)