Kodaira-Saito vanishing via Higgs bundles in positive characteristic

被引:5
作者
Arapura, Donu [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2019年 / 755卷
基金
美国国家科学基金会;
关键词
NONABELIAN HODGE THEORY; HARMONIC BUNDLES; DECOMPOSITION; SINGULARITIES; INEQUALITY; COMPLEXES; MODULES; SPACES;
D O I
10.1515/crelle-2017-0036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this paper is to give a new proof of a special case of the Kodaira-Saito vanishing theorem for a variation of Hodge structure on the complement of a divisor with normal crossings. The proof does not use the theory of mixed Hodge modules, but instead reduces it to a more general vanishing theorem for semistable nilpotent Higgs bundles, which is then proved by using some facts about Higgs bundles in positive characteristic.
引用
收藏
页码:293 / 312
页数:20
相关论文
共 38 条
[1]  
[Anonymous], 1992, Lectures on vanishing theorems
[2]  
[Anonymous], 1970, Equations differentielles a points singuliers reguliers
[3]  
[Anonymous], 1966, LECT NOTES MATH
[4]  
[Anonymous], 1990, J. Amer. Math. Soc., V3, P713, DOI [10.1090/S0894-0347-1990-1040197-8, DOI 10.2307/1990935]
[5]   Frobenius amplitude and strong vanishing theorems for vector bundles [J].
Arapura, D ;
Keeler, DS .
DUKE MATHEMATICAL JOURNAL, 2004, 121 (02) :231-267
[6]   Symmetric differentials and variations of Hodge structures [J].
Brunebarbe, Yohan .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 743 :133-161
[7]   P2 MODULES AND DECOMPOSITION OF THE DERHAM COMPLEX [J].
DELIGNE, P ;
ILLUSIE, L .
INVENTIONES MATHEMATICAE, 1987, 89 (02) :247-270
[8]   LOGARITHMIC DERHAM COMPLEXES AND VANISHING THEOREMS [J].
ESNAULT, H ;
VIEHWEG, E .
INVENTIONES MATHEMATICAE, 1986, 86 (01) :161-194
[9]   Some Remarks on the Semipositivity Theorems [J].
Fujino, Osamu ;
Fujisawa, Taro ;
Saito, Morihiko .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2014, 50 (01) :85-112
[10]   KAHLER FIBER SPACES OVER CURVES [J].
FUJITA, T .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1978, 30 (04) :779-794