On the convergence of fitting algorithms in computer vision

被引:20
作者
Chernov, N. [1 ]
机构
[1] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
基金
美国国家科学基金会;
关键词
statistical methods; maximum likelihood; convergence rates; conic fitting;
D O I
10.1007/s10851-006-0646-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate several numerical schemes for estimating parameters in computer vision problems: HEIV, FNS, renormalization method, and others. We prove mathematically that these algorithms converge rapidly, provided the noise is small. In fact, in just 1-2 iterations they achieve maximum possible statistical accuracy. Our results are supported by a numerical experiment. We also discuss the performance of these algorithms when the noise increases and/or outliers are present.
引用
收藏
页码:231 / 239
页数:9
相关论文
共 16 条
[1]   Statistical efficiency of curve fitting algorithms [J].
Chernov, N ;
Lesort, C .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 47 (04) :713-728
[2]   FNS, CFNS and HEIV: A unifying approach [J].
Chojnacki, W ;
Brooks, MJ ;
van den Hengel, A ;
Gawley, D .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2005, 23 (02) :175-183
[3]   From FNS to HEIV: A link between two vision parameter estimation methods [J].
Chojnacki, W ;
Brooks, MJ ;
van den Hengel, A ;
Gawley, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (02) :264-268
[4]   Rationalising the renormalisation method of Kanatani [J].
Chojnacki, W ;
Brooks, MJ ;
Hengel, AVD .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2001, 14 (01) :21-38
[5]   For geometric inference from images, what kind of statistical model is necessary? [J].
Kanatani, Kenichi .
Systems and Computers in Japan, 2004, 35 (06) :1-9
[6]   Further improving geometric fitting [J].
Kanatani, K .
FIFTH INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND MODELING, PROCEEDINGS, 2005, :2-13
[7]   Uncertainty modeling and model selection for geometric inference [J].
Kanatani, K .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (10) :1307-1319
[8]   Cramer-Rao lower bounds for curve fitting [J].
Kanatani, K .
GRAPHICAL MODELS AND IMAGE PROCESSING, 1998, 60 (02) :93-99
[9]   STATISTICAL BIAS OF CONIC FITTING AND RENORMALIZATION [J].
KANATANI, K .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (03) :320-326
[10]  
Kanatani K., 1996, STAT OPTIMIZATION GE