Root to Kellerer

被引:12
作者
Beiglbocek, Mathias [1 ]
Huesmann, Martin [2 ]
Stebegg, Florian [3 ]
机构
[1] Tech Univ Wien, Inst Stochast & Wirtschaftsmath, Wiedner Hauptstr 8, A-1040 Vienna, Austria
[2] Rhein Friedrich Wilhelms Univ Bonn, Inst Angew Math, Endenicher Allee 60, D-53115 Bonn, Germany
[3] Columbia Univ, Dept Stat, 1255 Amsterdam Ave, New York, NY 10025 USA
来源
SEMINAIRE DE PROBABILITES XLVIII | 2016年 / 2168卷
关键词
EXISTENCE;
D O I
10.1007/978-3-319-44465-9_1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We revisit Kellerer's Theorem, that is, we show that for a family of real probability distributions (mu(t))(t is an element of[0,1]) which increases in convex order there exists a Markov martingale. (S-t)(t is an element of[0,1]) s. t. S-t similar to mu(t). To establish the result, we observe that the set of martingale measures with given marginals carries a natural compact Polish topology. Based on a particular property of the martingale coupling associated to Root's embedding this allows for a relatively concise proof of Kellerer's theorem. We emphasize that many of our arguments are borrowed from Kellerer (Math Ann 198: 99-122, 1972), Lowther (Limits of one dimensional diffusions. ArXiv eprints, 2007), Hirsch-Roynette-Profeta-Yor (Peacocks and Associated Martingales, with Explicit Constructions. Bocconi & Springer Series, vol. 3, Springer, Milan; Bocconi University Press, Milan, 2011), and Hirsch et al. (Kellerer's Theorem Revisited, vol. 361, Prepublication Universite dEvry, Columbus, OH, 2012).
引用
收藏
页码:1 / 12
页数:12
相关论文
共 19 条