Deep Video Prediction for Time Series Forecasting

被引:2
|
作者
Zeng, Zhen [1 ]
Balch, Tucker [1 ]
Veloso, Manuela [1 ]
机构
[1] JP Morgan AI Res, New York, NY 10032 USA
来源
ICAIF 2021: THE SECOND ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE | 2021年
关键词
time-series forecasting; economic forecasting; image representations; neural networks; ARIMA; visualizations; HYBRID ARIMA; TRENDS;
D O I
10.1145/3490354.3494404
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Time series forecasting is essential for decision making in many domains. In this work, we address the challenge of predicting prices evolution among multiple potentially interacting financial assets. A solution to this problem has obvious importance for governments, banks, and investors. Statistical methods such as Auto Regressive Integrated Moving Average (ARIMA) are widely applied to these problems. In this paper, we propose to approach economic time series forecasting of multiple financial assets in a novel way via video prediction. Given past prices of multiple potentially interacting financial assets, we aim to predict the prices evolution in the future. Instead of treating the snapshot of prices at each time point as a vector, we spatially layout these prices in 2D as an image similar to market change visualization, and we can harness the power of CNNs in learning a latent representation for these financial assets. Thus, the history of these prices becomes a sequence of images, and our goal becomes predicting future images. We build on advances from computer vision for video prediction. Our experiments involve the prediction task of the price evolution of nine financial assets traded in U.S. stock markets. The proposed method outperforms baselines including ARIMA, Prophet and variations of the proposed method, demonstrating the benefits of harnessing the power of CNNs in the problem of economic time series forecasting.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] A Review on Deep Sequential Models for Forecasting Time Series Data
    Ahmed, Dozdar Mahdi
    Hassan, Masoud Muhammed
    Mstafa, Ramadhan J.
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2022, 2022
  • [42] Forecasting of Forex Time Series Data Based on Deep Learning
    Ni, Lina
    Li, Yujie
    Wang, Xiao
    Zhang, Jinquan
    Yu, Jiguo
    Qi, Chengming
    2018 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS, 2019, 147 : 647 - 652
  • [43] A Time Series Forecasting Model Based on Deep Learning Integrated Algorithm with Stacked Autoencoders and SVR for FX Prediction
    Shen, Hua
    Liang, Xun
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II, 2016, 9887 : 326 - 335
  • [44] Time-series prediction and forecasting of ambient noise levels using deep learning and machine learning techniques
    Tiwari, S. K.
    Kumaraswamidhas, L. A.
    Garg, N.
    NOISE CONTROL ENGINEERING JOURNAL, 2022, 70 (05) : 456 - 471
  • [45] Evolutive design of ARMA and ANN models for time series forecasting
    Flores, Juan J.
    Graff, Mario
    Rodriguez, Hector
    RENEWABLE ENERGY, 2012, 44 : 225 - 230
  • [46] A Hybrid System Based on Dynamic Selection for Time Series Forecasting
    de Oliveira, Joao F. L.
    Silva, Eraylson G.
    de Mattos Neto, Paulo S. G.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (08) : 3251 - 3263
  • [47] A novel text mining approach to financial time series forecasting
    Wang, Baohua
    Huang, Hejiao
    Wang, Xiaolong
    NEUROCOMPUTING, 2012, 83 : 136 - 145
  • [48] Stock Time Series Prediction Based on Deep Learning
    Zou Cunzhu
    Luo Jiping
    Bai Shengyuan
    Wang Yuanze
    Zhong Changfa
    Cai Yi
    2019 2ND INTERNATIONAL CONFERENCE ON MECHANICAL, ELECTRONIC AND ENGINEERING TECHNOLOGY (MEET 2019), 2019, : 15 - 19
  • [49] Empirical Mode Decomposition based ensemble deep learning for load demand time series forecasting
    Qiu, Xueheng
    Ren, Ye
    Suganthan, Ponnuthurai Nagaratnam
    Amaratunga, Gehan A. J.
    APPLIED SOFT COMPUTING, 2017, 54 : 246 - 255
  • [50] A novel featurization methodology using JaGen algorithm for time series forecasting with deep learning techniques
    Abbasimehr, Hossein
    Noshad, Ali
    Paki, Reza
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 235