A review of explanation methods for Bayesian networks

被引:125
作者
Lacave, C
Díez, FJ
机构
[1] Univ Castilla La Mancha, Dept Comp Sci, E-13071 Ciudad Real, Spain
[2] Univ Nacl Educ Distancia, Dept Artificial Intelligence, Madrid 28040, Spain
关键词
D O I
10.1017/S026988890200019X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the key factors for the acceptance of expert systems in real-world domains is the ability to explain their reasoning (Buchanan & Shortliffe, 1984; Henrion & Druzdzel, 1990). This paper describes the basic properties that characterise explanation methods and reviews the methods developed to date for explanation in Bayesian networks.
引用
收藏
页码:107 / 127
页数:21
相关论文
共 81 条
[41]  
HENRION M, 1990, P 6 C UNC ART INT JU, P17
[42]  
HORVITZ E, 1986, MEDINFO, V86, P27
[43]  
Howard R. A., 1984, READINGS PRINCIPLES
[44]  
Jensen FV., 1996, INTRO BAYESIAN NETWO INTRO BAYESIAN NETWO
[45]  
Lacave C, 2000, LECT NOTES COMPUT SC, V1933, P122
[46]  
LACAVE C, 2001, P WORKSH BAY MOD MED, P47
[47]   A METHODOLOGY FOR GENERATING COMPUTER-BASED EXPLANATIONS OF DECISION-THEORETIC ADVICE [J].
LANGLOTZ, CP ;
SHORTLIFFE, EH ;
FAGAN, LM .
MEDICAL DECISION MAKING, 1988, 8 (04) :290-303
[48]   A note on computing the saddle values in isosurface polygonization [J].
Lin, CC ;
Ching, YT .
VISUAL COMPUTER, 1997, 13 (07) :342-344
[49]  
LUDWIG K, 1998, PSYCHE INTERDISCIPLI, V4
[50]   Graphical explanation in belief networks [J].
Madigan, D ;
Mosurski, K ;
Almond, RG .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1997, 6 (02) :160-181