A comparison on multiple level features for fusion of hyperspectral and LiDAR data

被引:0
|
作者
Liao, Wenzhi [1 ]
Pizurica, Aleksandra [1 ]
Luo, Renbo [1 ]
Philips, Wilfried [1 ]
机构
[1] Univ Ghent, TELIN, IPI, iMinds, B-9000 Ghent, Belgium
来源
2017 JOINT URBAN REMOTE SENSING EVENT (JURSE) | 2017年
关键词
Urban remote sensing; graph fusion; deep learning; hyperspectral; LiDAR; REMOTE-SENSING DATA; ATTRIBUTE PROFILES; CLASSIFICATION;
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Remote sensed images contain a wealth of information. Next to diverse sensor technologies that allow us to measure different aspects of objects on the Earth (spectral characteristics in hyperspectral (HS) images, height in Light Detection And Ranging (LiDAR) data), we also have advanced image processing algorithms that have been developed to mine relevant information from multisensor remote sensing data for Earth observation. However, automatic interpretation of remote sensed images is still very difficult. In this paper, we compare multiple level features for fusion of HS and LiDAR data for urban area classification. Experimental results on fusion of HS and LiDAR data from the 2013 IEEE GRSS Data Fusion Contest demonstrate that middle-level morphological attribute features outperform high-level deep learning features. Compared to the methods using raw data fusion and deep learning fusion, with the graph-based fusion method [4], overall classification accuracies were improved by 8%.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network
    Ghamisi, Pedram
    Hoefle, Bernhard
    Zhu, Xiao Xiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (06) : 3011 - 3024
  • [22] HYPERSPECTRAL AND LIDAR DATA INTEGRATION AND CLASSIFICATION
    Angeles Garcia-Sopo, Maria
    Cuartero, Aurora
    Garcia Rodriguez, Pablo
    Plaza, Antonio
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 57 - 60
  • [23] A Triplet Semisupervised Deep Network for Fusion Classification of Hyperspectral and LiDAR Data
    Li, Jiaojiao
    Ma, Yinle
    Song, Rui
    Xi, Bobo
    Hong, Danfeng
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [24] A comprehensive review of hyperspectral data fusion with lidar and sar data
    Kahraman, Sevcan
    Bacher, Raphael
    ANNUAL REVIEWS IN CONTROL, 2021, 51 : 236 - 253
  • [25] Urban tree species mapping using hyperspectral and lidar data fusion
    Alonzo, Michael
    Bookhagen, Bodo
    Roberts, Dar A.
    REMOTE SENSING OF ENVIRONMENT, 2014, 148 : 70 - 83
  • [26] Fusion of waveform LiDAR data and hyperspectral imagery for land cover classification
    Wang, Hongzhou
    Glennie, Craig
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 108 : 1 - 11
  • [27] Deep Learning for Fusion of APEX Hyperspectral and Full-Waveform LiDAR Remote Sensing Data for Tree Species Mapping
    Liao, Wenzhi
    Van Coillie, Frieke
    Gao, Lianru
    Li, Liwei
    Zhang, Bing
    Chanussot, Jocelyn
    IEEE ACCESS, 2018, 6 : 68716 - 68729
  • [28] Forest structure modeling with combined airborne hyperspectral and LiDAR data
    Latifi, Hooman
    Fassnacht, Fabian
    Koch, Barbara
    REMOTE SENSING OF ENVIRONMENT, 2012, 121 : 10 - 25
  • [29] SEMATIC SEGMENTATION OF HYPERSPECTRAL IMAGES WITH THE FUSION OF LIDAR DATA
    Aytaylan, Hakan
    Yuksel, Seniha Esen
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2522 - 2525
  • [30] Fusion of Hyperspectral and LiDAR Data With a Novel Ensemble Classifier
    Xia, Junshi
    Yokoya, Naoto
    Iwasaki, Akira
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (06) : 957 - 961