A comparison on multiple level features for fusion of hyperspectral and LiDAR data

被引:0
|
作者
Liao, Wenzhi [1 ]
Pizurica, Aleksandra [1 ]
Luo, Renbo [1 ]
Philips, Wilfried [1 ]
机构
[1] Univ Ghent, TELIN, IPI, iMinds, B-9000 Ghent, Belgium
来源
2017 JOINT URBAN REMOTE SENSING EVENT (JURSE) | 2017年
关键词
Urban remote sensing; graph fusion; deep learning; hyperspectral; LiDAR; REMOTE-SENSING DATA; ATTRIBUTE PROFILES; CLASSIFICATION;
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Remote sensed images contain a wealth of information. Next to diverse sensor technologies that allow us to measure different aspects of objects on the Earth (spectral characteristics in hyperspectral (HS) images, height in Light Detection And Ranging (LiDAR) data), we also have advanced image processing algorithms that have been developed to mine relevant information from multisensor remote sensing data for Earth observation. However, automatic interpretation of remote sensed images is still very difficult. In this paper, we compare multiple level features for fusion of HS and LiDAR data for urban area classification. Experimental results on fusion of HS and LiDAR data from the 2013 IEEE GRSS Data Fusion Contest demonstrate that middle-level morphological attribute features outperform high-level deep learning features. Compared to the methods using raw data fusion and deep learning fusion, with the graph-based fusion method [4], overall classification accuracies were improved by 8%.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Hyperspectral and LiDAR data fusion in features based classification
    Farsat Heeto Abdulrahman
    Arabian Journal of Geosciences, 2021, 14 (24)
  • [2] PROBABILITY FUSION FOR HYPERSPECTRAL AND LIDAR DATA
    Ge, Chiru
    Du, Qian
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2675 - 2678
  • [3] Hyperspectral and LiDAR Data Fusion Using Collaborative Representation
    Du, Qian
    Ball, John E.
    Ge, Chiru
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY XXVI, 2020, 11392
  • [4] FUSION OF HYPERSPECTRAL AND LIDAR DATA IN CLASSIFICATION OF URBAN AREAS
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    Phinn, Stuart
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [5] Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning
    Khodadadzadeh, Mahdi
    Li, Jun
    Prasad, Saurabh
    Plaza, Antonio
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2971 - 2983
  • [6] Fusion Methods for Hyperspectral Image and LIDAR Data at Pixel-Level
    Abraham, C. Diana
    Aravinth, J.
    2018 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2018,
  • [7] Multiple Feature-Based Superpixel-Level Decision Fusion for Hyperspectral and LiDAR Data Classification
    Jia, Sen
    Zhan, Zhangwei
    Zhang, Meng
    Xu, Meng
    Huang, Qiang
    Zhou, Jun
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 1437 - 1452
  • [8] A metaheuristic feature-level fusion strategy in classification of urban area using hyperspectral imagery and LiDAR data
    Hasani, Hadiseh
    Samadzadegan, Farhad
    Reinartz, Peter
    EUROPEAN JOURNAL OF REMOTE SENSING, 2017, 50 (01) : 222 - 236
  • [9] FUSION OF HYPERSPECTRAL AND LIDAR DATA BASED ON DIMENSION REDUCTION AND MAXIMUM LIKELIHOOD
    Abbasi, B.
    Arefi, H.
    Bigdeli, B.
    Motagh, M.
    Roessner, S.
    36TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, 2015, 47 (W3): : 569 - 573
  • [10] Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest
    Debes, Christian
    Merentitis, Andreas
    Heremans, Roel
    Hahn, Juergen
    Frangiadakis, Nikolaos
    van Kasteren, Tim
    Liao, Wenzhi
    Bellens, Rik
    Pizurica, Aleksandra
    Gautama, Sidharta
    Philips, Wilfried
    Prasad, Saurabh
    Du, Qian
    Pacifici, Fabio
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2405 - 2418