Effects of Salt Stress on Transcriptional and Physiological Responses in Barley Leaves with Contrasting Salt Tolerance

被引:12
|
作者
Ouertani, Rim Nefissi [1 ]
Arasappan, Dhivya [2 ]
Ruhlman, Tracey A. [3 ]
Ben Chikha, Mariem [1 ]
Abid, Ghassen [4 ]
Mejri, Samiha [1 ]
Ghorbel, Abdelwahed [1 ]
Jansen, Robert K. [3 ,5 ]
机构
[1] Ctr Biotechnol Borj Cedria, Lab Plant Mol Physiol, BP 901, Hammam Lif 2050, Tunisia
[2] Univ Texas Austin, Ctr Biomed Res Support, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA
[4] Ctr Biotechnol Borj Cedria, Lab Legumes & Sustainable Agrosyst, BP 901, Hammam Lif 2050, Tunisia
[5] King Abdulaziz Univ KAU, Fac Sci, Dept Biol Sci, Biotechnol Res Grp, Jeddah 21589, Saudi Arabia
关键词
Hordeum vulgare L; landrace; salt tolerance; photosynthesis; antioxidant enzymes; RNA-seq; differentially expressed genes; co-expression network; MOLECULAR-MECHANISMS; GLUTATHIONE-REDUCTASE; ANTIOXIDANT ENZYMES; SALINITY TOLERANCE; WILD BARLEY; DROUGHT; GENE; WHEAT; WATER; PEROXIDASE;
D O I
10.3390/ijms23095006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Salt stress negatively impacts crop production worldwide. Genetic diversity among barley (Hordeum vulgare) landraces adapted to adverse conditions should provide a valuable reservoir of tolerance genes for breeding programs. To identify molecular and biochemical differences between barley genotypes, transcriptomic and antioxidant enzyme profiles along with several morpho-physiological features were compared between salt-tolerant (Boulifa) and salt-sensitive (Testour) genotypes subjected to salt stress. Decreases in biomass, photosynthetic parameters, and relative water content were low in Boulifa compared to Testour. Boulifa had better antioxidant protection against salt stress than Testour, with greater antioxidant enzymes activities including catalase, superoxide dismutase, and guaiacol peroxidase. Transcriptome assembly for both genotypes revealed greater accumulation of differentially expressed transcripts in Testour compared to Boulifa, emphasizing the elevated transcriptional response in Testour following salt exposure. Various salt-responsive genes, including the antioxidant catalase 3, the osmoprotectant betaine aldehyde dehydrogenase 2, and the transcription factors MYB20 and MYB41, were induced only in Boulifa. By contrast, several genes associated with photosystems I and II, and light receptor chlorophylls A and B, were more repressed in Testour. Co-expression network analysis identified specific gene modules correlating with differences in genotypes and morpho-physiological traits. Overall, salinity-induced differential transcript accumulation underlies the differential morpho-physiological response in both genotypes and could be important for breeding salt tolerance in barley.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Delineation of physiological and transcriptional responses of different barley genotypes to salt stress
    Ghorbani, Soraya
    Etminan, Alireza
    Rashidi, Varahram
    Pour-Aboughadareh, Alireza
    Shooshtari, Lia
    CEREAL RESEARCH COMMUNICATIONS, 2023, 51 (02) : 367 - 377
  • [2] Delineation of physiological and transcriptional responses of different barley genotypes to salt stress
    Soraya Ghorbani
    Alireza Etminan
    Varahram Rashidi
    Alireza Pour-Aboughadareh
    Lia Shooshtari
    Cereal Research Communications, 2023, 51 : 367 - 377
  • [3] Effects of Salt Stress on Physiological and Agronomic Traits of Rice Genotypes with Contrasting Salt Tolerance
    Xu, Yunming
    Bu, Weicheng
    Xu, Yuchao
    Fei, Han
    Zhu, Yiming
    Ahmad, Irshad
    Nimir, Nimir Eltyb Ahmed
    Zhou, Guisheng
    Zhu, Guanglong
    PLANTS-BASEL, 2024, 13 (08):
  • [4] Epichloe bromicola from wild barley improves salt-tolerance of cultivated barley by altering physiological responses to salt stress
    Wang, Zhengfeng
    Liu, Jing
    White, James F. F.
    Li, Chunjie
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [5] Comparative Transcriptional Profiling and Physiological Responses of Two Contrasting Oat Genotypes under Salt Stress
    Bin Wu
    Yarvaan Munkhtuya
    Jianjiang Li
    Yani Hu
    Qian Zhang
    Zongwen Zhang
    Scientific Reports, 8
  • [6] Physiological and transcriptional responses of contrasting alfalfa (Medicago sativa L.) varieties to salt stress
    Wenli Quan
    Xun Liu
    Haiqing Wang
    Zhulong Chan
    Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 126 : 105 - 115
  • [7] Physiological and transcriptional responses of contrasting alfalfa (Medicago sativa L.) varieties to salt stress
    Quan, Wenli
    Liu, Xun
    Wang, Haiqing
    Chan, Zhulong
    PLANT CELL TISSUE AND ORGAN CULTURE, 2016, 126 (01) : 105 - 115
  • [8] Comparative Transcriptional Profiling and Physiological Responses of Two Contrasting Oat Genotypes under Salt Stress
    Wu, Bin
    Munkhtuya, Yarvaan
    Li, Jianjiang
    Hu, Yani
    Zhang, Qian
    Zhang, Zongwen
    SCIENTIFIC REPORTS, 2018, 8
  • [9] Physiological and biochemical analysis of barley (Hordeum vulgare) genotypes with contrasting salt tolerance
    Ouertani, Rim Nefissi
    Abid, Ghassen
    Ben Chikha, Mariem
    Boudaya, Oumaima
    Mejri, Samiha
    Karmous, Chahine
    Ghorbel, Abdelwahed
    ACTA PHYSIOLOGIAE PLANTARUM, 2022, 44 (05)
  • [10] Physiological and biochemical analysis of barley (Hordeum vulgare) genotypes with contrasting salt tolerance
    Rim Nefissi Ouertani
    Ghassen Abid
    Mariem Ben Chikha
    Oumaima Boudaya
    Samiha Mejri
    Chahine Karmous
    Abdelwahed Ghorbel
    Acta Physiologiae Plantarum, 2022, 44