ASYMPTOTIC EXPANSIONS FOR APPROXIMATE EIGENVALUES OF INTEGRAL OPERATORS WITH NONSMOOTH KERNELS OF MULTIPLICITY m > 1
被引:1
作者:
Rane, Akshay S.
论文数: 0引用数: 0
h-index: 0
机构:
Birla Inst Technol & Sci, Dept Math, KK Birla Goa Campus, Zuarinagar, Goa, IndiaBirla Inst Technol & Sci, Dept Math, KK Birla Goa Campus, Zuarinagar, Goa, India
Rane, Akshay S.
[1
]
机构:
[1] Birla Inst Technol & Sci, Dept Math, KK Birla Goa Campus, Zuarinagar, Goa, India
Fredholm integral operator;
Green's function type kernels;
iterated Galerkin method;
multiple eigenvalue;
asymptotic expansion;
CONVERGENCE;
D O I:
10.1216/JIE-2019-31-3-411
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider an integral operator with a kernel of the Green's function type. We prove the existence of asymptotic expansion of an eigenvalue of multiplicity m > 1, when the integral operator is approximated by the iterated Galerkin operator. This enables us to use the Richardson extrapolation to increase the order of convergence of the eigenvalue. We consider a numerical example to illustrate our theoretical results.