ASYMPTOTIC EXPANSIONS FOR APPROXIMATE EIGENVALUES OF INTEGRAL OPERATORS WITH NONSMOOTH KERNELS OF MULTIPLICITY m > 1

被引:1
作者
Rane, Akshay S. [1 ]
机构
[1] Birla Inst Technol & Sci, Dept Math, KK Birla Goa Campus, Zuarinagar, Goa, India
关键词
Fredholm integral operator; Green's function type kernels; iterated Galerkin method; multiple eigenvalue; asymptotic expansion; CONVERGENCE;
D O I
10.1216/JIE-2019-31-3-411
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an integral operator with a kernel of the Green's function type. We prove the existence of asymptotic expansion of an eigenvalue of multiplicity m > 1, when the integral operator is approximated by the iterated Galerkin operator. This enables us to use the Richardson extrapolation to increase the order of convergence of the eigenvalue. We consider a numerical example to illustrate our theoretical results.
引用
收藏
页码:411 / 430
页数:20
相关论文
共 15 条