AN IMPROVED LOWER BOUND ON THE NUMBER OF LIMIT CYCLES BIFURCATING FROM A QUINTIC HAMILTONIAN PLANAR VECTOR FIELD UNDER QUINTIC PERTURBATION

被引:4
作者
Johnson, Tomas [1 ]
Tucker, Warwick [2 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[2] Univ Bergen, Dept Math, N-5008 Bergen, Norway
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2010年 / 20卷 / 01期
关键词
Limit cycles; bifurcation theory; planar Hamiltonian systems; interval analysis; 16TH PROBLEM; SYSTEM;
D O I
10.1142/S0218127410025405
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The limit cycle bifurcation of a Z(2) equivariant quintic planar Hamiltonian vector field under Z2 equivariant quintic perturbation is studied. We prove that the given system can have at least 27 limit cycles. This is an improved lower bound on the possible number of limit cycles that can bifurcate from a quintic planar Hamiltonian system under quintic perturbation.
引用
收藏
页码:63 / 70
页数:8
相关论文
共 29 条
[1]  
Alefeld G., 1983, Introduction to Interval Computation
[2]  
[Anonymous], 1990, ENCY MATH ITS APPL
[3]  
[Anonymous], 1995, C++ Toolbox for Verified Computing I, Basic Numerical Problems
[4]  
[Anonymous], 2004, J. Dyn. Differ. Equ.
[5]  
[Anonymous], 1992, CURRENT MATH TOPICS
[6]  
Arnold V.I., 1990, Adv. Soviet Math, V1, P1
[7]   A unified proof on the weak Hilbert 16th problem for n=2 [J].
Chen, F ;
Li, CZ ;
Llibre, J ;
Zhang, ZH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 221 (02) :309-342
[8]  
Christopher C., 2007, Advanced Courses in Mathematics
[9]  
Guckenheimer J., 2013, J APPL MECH, P475, DOI [10.1098/rsif.2013.0237, DOI 10.1115/1.3167759]
[10]   Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians [J].
Horozov, E ;
Iliev, ID .
NONLINEARITY, 1998, 11 (06) :1521-1537