A multilevel domain decomposition algorithm for fast O(N2 log N) reprojection of tomographic images

被引:35
作者
Boag, A [1 ]
Bresler, Y
Michielssen, E
机构
[1] Tel Aviv Univ, Dept Elect Engn Phys Elect, IL-69978 Tel Aviv, Israel
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/83.862638
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel algorithm for fast computation of tomographic image projections is presented. The method comprises a decomposition of an image into subimages followed by an aggregation of projections computed for the subimages, The multilevel domain decomposition algorithm is formulated as a recursive procedure. The computational cost of the proposed algorithm is comparable to that of FFT-based techniques while it appears to be more flexible than the latter. Numerical results demonstrate the effectiveness of the method.
引用
收藏
页码:1573 / 1582
页数:10
相关论文
共 41 条
[1]  
ARATA BMW, 1996, Patent No. 5552605
[2]   A fast discrete approximation algorithm for the Radon transform [J].
Brady, ML .
SIAM JOURNAL ON COMPUTING, 1998, 27 (01) :107-119
[3]  
BRADY ML, 1992, P ACM S PAR ALG ARCH, P91
[4]   Fast calculation of multiple line integrals [J].
Brandt, A ;
Dym, J .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (04) :1417-1429
[5]  
BRANDT A, IN PRESS SIAM J APPL
[6]  
Crawford C. R., 1988, Proceedings of the SPIE - The International Society for Optical Engineering, V914, P311, DOI 10.1117/12.968646
[7]   REPROJECTION USING A PARALLEL BACKPROJECTOR [J].
CRAWFORD, CR .
MEDICAL PHYSICS, 1986, 13 (04) :480-483
[8]  
CRAWFORD CR, 1987, Patent No. 4709333
[9]  
DANIELSSON PE, 1997, ITERATIVE TECHNIQUES
[10]  
Deans S., 1983, RADON TRANSFORM SOME