Probabilistic framework for a microstructure-sensitive fatigue notch factor

被引:38
作者
Owolabi, G. M. [1 ,2 ]
Prasannavenkatesan, R. [3 ]
McDowell, D. L. [1 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Howard Univ, Dept Mech Engn, Washington, DC 20059 USA
[3] QuesTek Innovat LLC, Evanston, IL 60201 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Probabilistic mesomechanics; Weakest link; Microstructure-sensitive; Fatigue notch factor; Fatigue indicator parameters; Fatigue crack formation; LIFE PREDICTION; LIMIT STRESS; STRAINS; MODEL; MICROMECHANICS; SIZE;
D O I
10.1016/j.ijfatigue.2010.02.003
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
To advance fatigue life prediction algorithms, more comprehensive knowledge of the intensity and distribution of slip within microstructure at the notch root is desired to quantify notch size effects. This study utilizes 3D computational crystal plasticity to assess the degree of heterogeneity of cyclic plastic deformation as a function of notch size and notch root acuity for notch root strain amplitudes near and below the macroscopic yield strain (high cycle fatigue) and for several realizations of aggregates of grains with random orientation distribution at the notch root for polycrystalline OFHC Cu. By using different notch root radii and microstructure realizations of aggregates of grains, statistical information regarding the distributions of stress/strain gradients and fatigue indicator parameters provides useful insight into the microstructure dependence of driving forces for fatigue crack formation at the scale of mean grain size. Results from simulations within a quantitatively defined notch root damage process zone are used along with a probabilistic mesomechanics approach to quantify notch size effects by defining a new microstructure-sensitive fatigue notch factor that considers the probability distribution of the high cycle fatigue strength. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1378 / 1388
页数:11
相关论文
共 50 条
[1]  
*ABAQUS, 2006, SIM VER 6 6
[2]   Advanced volumetric method for fatigue life prediction using stress gradient effects at notch roots [J].
Adib-Ramezani, H. ;
Jeong, J. .
COMPUTATIONAL MATERIALS SCIENCE, 2007, 39 (03) :649-663
[3]   A LOCAL CRITERION FOR CLEAVAGE FRACTURE OF A NUCLEAR PRESSURE-VESSEL STEEL [J].
不详 .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1983, 14 (11) :2277-2287
[4]  
[Anonymous], 1988, Parameter estimation in reliability and life span models
[5]   MICROMECHANICS OF CRYSTALS AND POLYCRYSTALS [J].
ASARO, RJ .
ADVANCES IN APPLIED MECHANICS, 1983, 23 :1-115
[6]   A YIELD SURFACE APPROACH TO THE ESTIMATION OF NOTCH STRAINS FOR PROPORTIONAL AND NONPROPORTIONAL CYCLIC LOADING [J].
BARKEY, ME ;
SOCIE, DF ;
HSIA, KJ .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1994, 116 (02) :173-180
[7]   The fatigue behaviour of three-dimensional stress concentrations [J].
Bellett, D ;
Taylor, D ;
Marco, S ;
Mazzeo, E ;
Guillois, J ;
Pircher, T .
INTERNATIONAL JOURNAL OF FATIGUE, 2005, 27 (03) :207-221
[8]  
BUCH A, 1988, FATIGUE STRENGTH CAL, V6
[9]   MODIFIED MOMENT ESTIMATION FOR THE 3-PARAMETER WEIBULL DISTRIBUTION [J].
COHEN, AC ;
WHITTEN, BJ ;
DING, YH .
JOURNAL OF QUALITY TECHNOLOGY, 1984, 16 (03) :159-167
[10]  
CUTINO AM, 1992, MODELLING SIMUL MATE, V1, P225