High Throughput Electrical Characterization for Robust Overlay Lithography Control

被引:0
|
作者
Devender, Devender [1 ]
Shen, Xumin [2 ]
Duggan, Mark [1 ]
Singh, Sunil [1 ]
Rullan, Jonathan [1 ]
Choo, Jae [1 ]
Mehta, Sohan [1 ]
Tang, Teck Jung [1 ]
Reidy, Sean [1 ]
Holt, Jonathan [2 ]
Kim, Hyung Woo [1 ]
Fox, Robert [1 ]
Sohn, D. K. [1 ]
机构
[1] GLOBALFOUNDRIES US Inc, Malta, NY 12020 USA
[2] PDF Solut, San Jose, CA 95110 USA
来源
METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXXI | 2017年 / 10145卷
关键词
Overlay; Electrical Characterization; Lithography; Semiconductor;
D O I
10.1117/12.2260707
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Realizing sensitive, high throughput and robust overlay measurement is a challenge in current 14nm and advanced upcoming nodes with transition to 300mm and upcoming 450mm semiconductor manufacturing, where slight deviation in overlay has significant impact on reliability and yield. Exponentially increasing number of critical masks in multi-patterning litho-etch, litho-etch (LELE) and subsequent LELELE semiconductor processes require even tighter overlay specification .Here, we discuss limitations of current image- and diffraction- based overlay measurement techniques to meet these stringent processing requirements due to sensitivity, throughput and low contrast. We demonstrate a new electrical measurement based technique where resistance is measured for a macro with intentional misalignment between two layers. Overlay is quantified by a parabolic fitting model to resistance where minima and inflection points are extracted to characterize overlay control and process window, respectively. Analyses using transmission electron microscopy show good correlation between actual overlay performance and overlay obtained from fitting. Additionally, excellent correlation of overlay from electrical measurements to existing image- and diffraction- based techniques is found. We also discuss challenges of integrating electrical measurement based approach in semiconductor manufacturing from Back End of Line (BEOL) perspective. Our findings open up a new pathway for accessing simultaneous overlay as well as process window and margins from a robust, high throughput and electrical measurement approach.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Overlay control for nanoimprint lithography
    Fukuhara, Kazuya
    Suzuki, Masato
    Mitsuyasu, Masaki
    Kono, Takuya
    Nakasugi, Tetsuro
    Lim, Yonghyun
    Jung, Wooyung
    EMERGING PATTERNING TECHNOLOGIES, 2017, 10144
  • [2] Overlay control requirements for immersion lithography
    Eichelberger, B.
    Adel, M.
    Izikson, P.
    Tien, D.
    Huang, C. K.
    Robinson, J. C.
    Herrera, Pedro
    2008 IEEE/SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE, 2008, : 359 - +
  • [3] Stochastic Control of Multilayer Overlay in Lithography Processes
    Jiao, Yibo
    Djurdjanovic, Dragan
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2011, 24 (03) : 404 - 417
  • [4] Patterning, Mask Life, Throughput and Overlay Improvements for High Volume Semiconductor Manufacturing using Nanoimprint Lithography
    Morimoto, Osamu
    Iwanaga, Takehiko
    Takabayashi, Yukio
    Sakai, Keita
    Zhang, Wei
    Cherala, Anshuman
    Im, Se-Hyuk
    Meissl, Mario
    Choi, Jin
    PHOTOMASK TECHNOLOGY 2019, 2019, 11148
  • [5] The challenges of transitioning from linear to high-order overlay control in advanced lithography
    Adel, M.
    Izikson, P.
    Tien, D.
    Huang, C. K.
    Robinson, J. C.
    Eichelberger, B.
    QUANTUM OPTICS, OPTICAL DATA STORAGE, AND ADVANCED MICROLITHOGRAPHY, 2008, 6827
  • [6] Mapper: High throughput maskless lithography
    Slot, E.
    Wieland, M. J.
    de Boer, G.
    Kruit, P.
    ten Berge, G. F.
    Houkes, A. M. C.
    Jager, R.
    van de Peut, T.
    Peijster, J. J. M.
    Steenbrink, S. W. H. K.
    Teepen, T. F.
    van Veen, A. H. V.
    Kampherbeek, B. J.
    EMERGING LITHOGRAPHIC TECHNOLOGIES XII, PTS 1 AND 2, 2008, 6921
  • [7] MAPPER: High throughput maskless lithography
    Wieland, M. J.
    de Boer, G.
    ten Berge, G. F.
    Jager, R.
    van de Peut, T.
    Peijster, J. J. M.
    Slot, E.
    Steenbrink, S. W. H. K.
    Teepen, T. F.
    van Veen, A. H. V.
    Kampherbeek, B. J.
    ALTERNATIVE LITHOGRAPHIC TECHNOLOGIES, 2009, 7271
  • [8] Double Patterning Lithography Study with High Overlay Accuracy
    Kikuchi, Takahisa
    Shirata, Yosuke
    Yasuda, Masahiko
    Iriuchijima, Yasuhiro
    Takemasa, Kengo
    Tanaka, Ryo
    Hazelton, Andrew
    Ishii, Yuuki
    OPTICAL MICROLITHOGRAPHY XXIII, 2010, 7640
  • [9] Arrayed microcolumns for high throughput lithography
    Kim, HS
    Kim, DW
    Ahn, SJ
    Kim, YC
    Jang, Y
    Kim, HW
    Choi, SK
    Kim, DY
    Emerging Lithographic Technologies IX, Pts 1 and 2, 2005, 5751 : 340 - 348
  • [10] MAPPER: High throughput maskless lithography
    Wieland, M. J.
    de Boer, G.
    ten Berge, G. F.
    van Kervinck, M.
    Jager, R.
    Peijster, J. J. M.
    Slot, E.
    Steenbrink, S. W. H. K.
    Teepen, T. F.
    Kampherbeek, B. J.
    ALTERNATIVE LITHOGRAPHIC TECHNOLOGIES II, 2010, 7637